Project description:Deciphering typical and atypical chronic lymphocytic leukemia genomics. DNA was isolated from peripheral blood leucocyte samples of each patient using the QIAamp kit in order to compare typical and atypical chronic lymphocytic leukemia patients using Agilent Whole Human Genome 44K and 244K microarrays.
Project description:Genomic profiles of CLL (Chronic Lymphocytic Leukemia) patients. 11 CLL patients were selected for detection of genomic aberrations, 8 patients with atypical CLL and 3 patients with typical CLL. Patient's DNA were hybridized against Promega control on Agilent G4410A arrays and scanned with the Agilent G2505B scanner.
Project description:Genomic profiles of CLL (Chronic Lymphocytic Leukemia) patients. 11 CLL patients were selected for detection of genomic aberrations, 8 patients with atypical CLL and 3 patients with typical CLL.
Project description:B cell chronic lymphocytic leukemia - A model with immune response
Seema Nanda 1, , Lisette dePillis 2, and Ami Radunskaya 3,
1.
Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore 560065, India
2.
Department of Mathematics, Harvey Mudd College, Claremont, CA 91711
3.
Department of Mathematics, Pomona College, Claremont, CA, 91711, United States
Abstract
B cell chronic lymphocytic leukemia (B-CLL) is known to have substantial clinical heterogeneity. There is no cure, but treatments allow for disease management. However, the wide range of clinical courses experienced by B-CLL patients makes prognosis and hence treatment a significant challenge. In an attempt to study disease progression across different patients via a unified yet flexible approach, we present a mathematical model of B-CLL with immune response, that can capture both rapid and slow disease progression. This model includes four different cell populations in the peripheral blood of humans: B-CLL cells, NK cells, cytotoxic T cells and helper T cells. We analyze existing data in the medical literature, determine ranges of values for parameters of the model, and compare our model outcomes to clinical patient data. The goal of this work is to provide a tool that may shed light on factors affecting the course of disease progression in patients. This modeling tool can serve as a foundation upon which future treatments can be based.
Keywords: NK cell, chronic lymphocytic leukemia, mathematical model, T cell., B-CLL.
Project description:This SuperSeries is composed of the following subset Series: GSE11564: Discovery of the targets of the immune response to chronic lymphocytic leukemia in 2 patients using protein microarrays GSE11565: Discovery of the targets of the immune response to chronic myeloid leukemia in 3 patients using protein microarrays Keywords: SuperSeries Refer to individual Series
Project description:Micro-RNA expression data of CD19 selected B-cells from previously treated and relapsed chronic lymphocytic leukemia patients. We aimed to correlate miR-34a with TP53 mutation status and del17p status. CD19 B-cells from previously treated and relapsed chronic lymphocytic leukemia patients were selected for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in Western countries. The main genetic alterations associated to this disease are loss of 13q14, loss of 11q23, trisomy 12 and, less frequently, 17p13 losses, and are routinely studied using fluorescence in situ hybridization. These genomic aberrations have been demonstrated to be important independent predictors of disease progression in CLL and their detection currently has a direct implication in the treatment strategy of the patients. It has been widely demonstrated that array-based karyotyping clearly detects DNA gains and losses and allows the identification of CLL abnormalities not included in the standard FISH panel. We have here established and tested an oligonucleotide-based array platform for the diagnosis of CLL that interrogates the most relevant chromosomal regions related with the disease and may help in the differential diagnosis between CLL and other small B-cell leukemias and may be used as a powerful prognosis tool to stratify the CLL patients. Copy number analysis using Custom Agilent 60K was performed on 47 chronic lymphocytic Leukemia patients with sex-matched control DNAs
Project description:This SuperSeries is composed of the following subset Series:; GSE10137: A Genomic Approach to Improve Prognosis and Predict Therapeutic Response in Chronic Lymphocytic Leukemia (Mayo_Ohio); GSE10138: A Genomic Approach to Improve Prognosis and Predict Therapeutic Response in Chronic Lymphocytic Leukemia (Duke_VA) Experiment Overall Design: Refer to individual Series
Project description:We studied the value of the microRNAs as a signature for Chronic lymphocytic leukemia (CLL) patients with specific chromosomal abnormalities. We found that MiR-181b is abiomarker of disease progression in Chronic Lymphocytic Leukemia