Project description:Changes in gene regulation rapidly accumulate between species and may contribute to reproductive isolation through misexpression of genes in interspecific hybrids. Hybrid misexpression, defined by expression levels outside the range of both parental species, is thought to be a result of cis- and trans-acting regulatory changes that interact in the hybrid, or arise from changes in the relative abundance of various tissues or cell types due to defects in developmental. Here, we show that misexpressed genes in a sterile interspecific Saccharomyces yeast hybrid result from a heterochronic shift in the timing of the normal meiotic gene expression program. By tracking nuclear divisions, we find that S. cerevisiae initiates meiosis earlier than its closest known relative, S. paradoxus, yet both species complete meiosis at the same time. Although the hybrid up- and down-regulates genes in a similar manner to both parents, the hybrid meiotic program occurs earlier than both parents. The timing shift results in a heterochronic pattern of misexpression throughout meiosis I and the beginning of meiosis II. Coincident with the timing of misexpression, we find an increase in the relative abundance of opposing cis and trans-acting changes and compensatory changes, as well as a transition from predominantly trans-acting to cis-acting expression divergence over the course of meiosis. However, misexpression does not appear to be a direct consequence of cis- and trans-acting regulatory divergence. Our results demonstrate that hybrid misexpression in yeast results from a heterochronic shift in the meiotic gene expression program. We analyzed three biological replicates of the parental yeast strains, S. cerevisiae and S. paradoxus, and four replicates of their hybrid over four developmental time points. Two hybrid replicates contain MATa from S. cerevisiae and MATalpha from S. paradoxus. The other two hybrid replicates are reciprocal crosses. The developmental time points are T0, which serves as a control, and is the moment cells enter sporulation media. M1 is the beginning of meiosis I. M1/M2 is the overlap of the end of meiosis I and the beginning of meiosis II. M2 is the end of meiosis II.
Project description:Changes in gene regulation rapidly accumulate between species and may contribute to reproductive isolation through misexpression of genes in interspecific hybrids. Hybrid misexpression, defined by expression levels outside the range of both parental species, is thought to be a result of cis- and trans-acting regulatory changes that interact in the hybrid, or arise from changes in the relative abundance of various tissues or cell types due to defects in developmental. Here, we show that misexpressed genes in a sterile interspecific Saccharomyces yeast hybrid result from a heterochronic shift in the timing of the normal meiotic gene expression program. By tracking nuclear divisions, we find that S. cerevisiae initiates meiosis earlier than its closest known relative, S. paradoxus, yet both species complete meiosis at the same time. Although the hybrid up- and down-regulates genes in a similar manner to both parents, the hybrid meiotic program occurs earlier than both parents. The timing shift results in a heterochronic pattern of misexpression throughout meiosis I and the beginning of meiosis II. Coincident with the timing of misexpression, we find an increase in the relative abundance of opposing cis and trans-acting changes and compensatory changes, as well as a transition from predominantly trans-acting to cis-acting expression divergence over the course of meiosis. However, misexpression does not appear to be a direct consequence of cis- and trans-acting regulatory divergence. Our results demonstrate that hybrid misexpression in yeast results from a heterochronic shift in the meiotic gene expression program.
Project description:In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3 cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors. MNase-seq analysis of nucleosome position in wt, sir2 and rpd3 cells, aligned against genomic DNA (sacCer3; *sorted_s3.bed) and rDNA sequences (*rdna_nucleosomes.bed)
Project description:Accurate chromosome segregation requires centromeres (CENs), the chromosomal sites where kinetochores form, to bridge DNA and attach to microtubules. In contrast to most eukaryotes, Saccharomyces cerevisiae possesses sequence-defined point centromeres. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of four kinetochore components reveals regions of overlapping, extra-centromeric protein localization upon overproduction of the centromeric histone, Cse4 (CENP-A or CenH3). These identified sequences enhance proper plasmid and chromosome segregation, and are termed Centromere-like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of point and regional centromeres. CLR sequences are conserved among related budding yeasts, suggesting a role in vivo. These studies provide new insights into the origin and evolution of centromeres. ChIP-Seq analysis of the kinetochore components Cse4, Mif2, Ndc10 and Ndc80 in budding yeast strains (Saccharomyces cerevisiae) with normal and elevated levels of Cse4
Project description:In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3 cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.
Project description:In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3 cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.
Project description:In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3 cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.