Project description:During embryogenesis, nociceptive sensory neurons of the dorsal root ganglia depend intimately on Nerve Growth Factor (NGF) for neuronal survival, maturation and target innervation. NGF is a secreted molecular signal synthesized by neuronal target tissues. In developing nociceptors, NGF engages the receptor tyrosine kinase TrkA to activate a gene transcriptional program involving the regulation of hundreds of transcripts. To identify NGF-dependent genes in developing mouse nociceptors, we have designed and performed two separate microarray screens to compare gene expression profiles of DRG neurons either with or lacking NGF signaling.
Project description:During embryogenesis, nociceptive sensory neurons of the dorsal root ganglia depend intimately on Nerve Growth Factor (NGF) for neuronal survival, maturation and target innervation. NGF is a secreted molecular signal synthesized by neuronal target tissues. In developing nociceptors, NGF engages the receptor tyrosine kinase TrkA to activate a gene transcriptional program involving the regulation of hundreds of transcripts. To identify NGF-dependent genes in developing mouse nociceptors, we have designed and performed two separate microarray screens to compare gene expression profiles of DRG neurons either with or lacking NGF signaling. For the first screen comparing DRGs of BaxM-bM-^HM-^R/M-bM-^HM-^R and NgfM-bM-^HM-^R/M-bM-^HM-^R; BaxM-bM-^HM-^R/M-bM-^HM-^R mice, DRGs were dissected and pooled from E14.5 NgfM-bM-^HM-^R/M-bM-^HM-^R; BaxM-bM-^HM-^R/M-bM-^HM-^R and BaxM-bM-^HM-^R/M-bM-^HM-^R embryos. Total RNA was extracted and directly subjected to microarray analysis. For the second screen comparing mouse DRG explants grown in the presence or absence of NGF, E13.5 mouse DRG explants were cultured for two days with 50 ng/ml of either NGF or NT3. Total RNA was extracted and then subjected to microarray analysis.
Project description:Nociceptors play an essential role in both acute pain and chronic pain conditions. In this study, we examined the proteome of mouse dorsal root ganglia and compared NaV1.8Cre+/-; ROSA26-flox-stop-flox-DTA (Diphtheria toxin fragment A) mutant mice (NaV1.8Cre-DTA), in which NaV1.8-positive neurons (mainly nociceptors) in dorsal root ganglia (DRG) were ablated, with respective littermate wildtype controls.
Project description:Transcriptional analysis of identified DRG subpopulations. Cell-type specific intrinsic programs instruct neuronal subpopulations before target-derived factors influence later neuronal maturation. Retrograde neurotrophin signaling controls neuronal survival and maturation of dorsal root ganglion (DRG) sensory neurons, but how these potent signaling pathways intersect with transcriptional programs established at earlier developmental stages remains poorly understood. Here we determine the consequences of genetic alternation of NT3 signaling on genome-wide transcription programs in proprioceptors, an important sensory neuron subpopulation involved in motor reflex behavior. We find that the expression of many proprioceptor-enriched genes is dramatically altered by genetic NT3 elimination, independent of survival-related activities. Combinatorial analysis of gene expression profiles with proprioceptors isolated from mice expressing surplus muscular NT3 identifies an anticorrelated gene set with transcriptional levels scaled in opposite directions. Voluntary running experiments in adult mice further demonstrate the maintenance of transcriptional adjustability of genes expressed by DRG neurons, pointing to life-long gene expression plasticity in sensory neurons. We combined a mouse line expressing GFP under the control of the TrkC promoter (BAC transgene approach) with various NT3 signaling mutants in order to identify the transcriptional changes in identified subpopulations of dorsal root ganglia (DRG) neurons. Sorted cells were processed for RNA extraction and hybridization on Affymetrix microarrays. Analysis was performed a postnatal (p) day p0. Subsequent analysis focused on the transcriptional profile of DRG neuron subpopulations at specific lumbar levels. Additional work addressed the transcriptional changes in whole DRG in adult mice with and without physical exercise.
Project description:We report that developmental competition between sympathetic neurons for survival is critically dependent on a sensitization process initiated by target innervation and mediated by a series of feedback loops. Target-derived nerve growth factor (NGF) promoted expression of its receptor TrkA in neurons and prolonged TrkA-mediated signals. NGF also controlled expression of brain derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), which, through the receptor p75, can kill neighboring neurons with low retrograde NGFâ??TrkA signaling whereas neurons with high NGFâ??TrkA signaling are protected. Perturbation of any of these feedback loops disrupts the dynamics of competition. We suggest that three target-initiated events are essential for rapid and robust competition between neurons: sensitization, paracrine apoptotic signaling, and protection from such effects. Experiment Overall Design: This experiment examine gene expression differences in superior cervical ganglia fro P0 bax null versus NGF-Bax double null animals. The Bax genotype was used in order to prevent the neuronal cell death normally observed in the NGF null animal.
Project description:Vagal afferent neurons are thought to convey primarily physiological information, whereas spinal afferents transmit noxious signals from the viscera to the central nervous system. In order to elucidate molecular identities for these different properties, we compared gene expression profiles of neurons located in nodose ganglia (NG) and dorsal root ganglia (DRG) in mice. Intraperitoneal administration of Alexa Fluor-488 conjugated Cholera toxin B allowed identification of neurons projecting to the viscera. Fluorescent neurons in DRG (from T10 to T13) and NG were isolated using laser capture microdissection. Gene expression profiles of visceral afferent neurons, obtained by microarray hybridization, were analysed using multivariate spectral map analysis, SAM algorithm (Significance Analysis of Microarray data) and fold-difference filtering. A total of 1996 genes were found to be differentially expressed in DRG versus NG, including 41 G-protein coupled receptors and 60 ion channels. Expression profiles obtained on laser-captured neurons were contrasted to those obtained on whole ganglia demonstrating striking differences and the need for microdissection when studying visceral sensory neurons because of dilution of the signal by somatic sensory neurons. Furthermore, a detailed catalogue of all adrenergic and cholinergic, GABA, glutamate, serotonin and dopamine receptors, voltage-gated potassium, sodium and calcium channels and transient receptor potential cation channels present in visceral afferents is provided. Our genome-wide expression profiling data provide novel insight into molecular signatures that underlie both functional differences and similarities between NG and DRG visceral sensory neurons. Moreover, these findings will offer novel insight into mode of action of pharmacologic agents modulating visceral sensation. Experiment Overall Design: Three separate experiments were performed. First, 5 whole dorsal root ganglia were compared to 7 whole nodose ganglia. Second, Laser captured visceral neurons derived from 5 dorsal root ganglia and 5 nodose ganglia were compared on MG-U74Av2. Third, Laser captured visceral neurons derived from 9 dorsal root ganglia and 11 nodose ganglia were compared on Mouse430_2.
Project description:The goal of this study was to analyze global gene expression in specific populations of nociceptor sensory neurons, the neurons that detect damaging/noxious stimuli. The dorsal root ganglia (DRG), trigeminal ganglia, and nodose ganglia are anatomically distinct peripheral sensory ganglia that contain nociceptors which innervate skin, gut, lungs, and other distinct organ tissues. We used flow cytometry to purify nociceptors from these ganglia and profiled their global gene expression signatures to compare gene expression between these different anatomically distinct nociceptors. Nav1.8-Cre were bred with Rosa26-TdTomato to generate Nav1.8-Cre/R26-TdTomato reporter progeny, where all peripheral nociceptor neurons are genetically marked with red fluroescence due to specific expression of the TTX- resistant sodium channel Nav1.8. Lumbar region dorsal root ganglia (DRG), trigeminal ganglia, and nodose ganglia were dissected from mice (3 mice were pooled/sample). Highly red fluorescent neurons were Facs purified, RNA extracted, and processed for microarray analysis.
Project description:Here we studied the NOX2 dependent redox-proteome in dorsal root ganglia in mice. The overall goal was to assess the degree of NOX2-dependent changes in oxidised proteins following exposure to enriched enviroment and sciatic nerve axotomy in dorsal root ganglia.