Project description:Chromium (Cr) is a non-essential metal for normal plants and is toxic to plants at high concentration. In spite of many previous studies having been conducted on the effects of Cr stress, the precise molecular mechanisms and signaling pathways of action of Cr remain poorly understood. In this study, the transcriptome at the early of Cr (VI) stress were assayed in rice roots. To gain more insight into these cellular responses, we analyzed whole-genome transcriptome of rice expose to Cr (VI) for 1 and 3 h. Analysis revealed 1,261 and 267 up and down-regulated genes by Cr (VI). Cr (VI) stress triggered changes in transcript levels of genes related to secondary metabolism process, biosynthetic process, specially jasmonic acid biosynthetic process, response to abiotic stress, specially response to toxin, transcription regulator activity, specially transcription factors activity. The most predominant transcription factor families were WRKY, AP2/ERF, NAC, C2H2, MYB. In addition, many protein kinase, including eight MAPKKK, two CDPK, and one MAPK, showed significant increase in transcriptional level under Cr (VI) stress. Molecular mechanisms for the excess Cr(VI) in rice roots Comparison of mock control and rice seedlings treated with 200 M-NM-<M Cr(VI); Biological replicates: 3 control replicates, 3 Cr(VI)-treated replicates.
Project description:Chromium (Cr) is a non-essential metal for normal plants and is toxic to plants at high concentration. In spite of many previous studies having been conducted on the effects of Cr stress, the precise molecular mechanisms and signaling pathways of action of Cr remain poorly understood. In this study, the transcriptome at the early of Cr (VI) stress were assayed in rice roots. To gain more insight into these cellular responses, we analyzed whole-genome transcriptome of rice expose to Cr (VI) for 1 and 3 h. Analysis revealed 1,261 and 267 up and down-regulated genes by Cr (VI). Cr (VI) stress triggered changes in transcript levels of genes related to secondary metabolism process, biosynthetic process, specially jasmonic acid biosynthetic process, response to abiotic stress, specially response to toxin, transcription regulator activity, specially transcription factors activity. The most predominant transcription factor families were WRKY, AP2/ERF, NAC, C2H2, MYB. In addition, many protein kinase, including eight MAPKKK, two CDPK, and one MAPK, showed significant increase in transcriptional level under Cr (VI) stress. Molecular mechanisms for the excess Cr(VI) in rice roots
Project description:Detailed analysis of genome-wide transcriptome profiling in rice root is reported here, following Cr-plant interaction. Such studies are important for the identification of genes responsible for tolerance, accumulation and defense response in plants with respect to Cr stress. Rice root metabolome analysis was also carried out to relate differential transcriptome data to biological processes affected by Cr (VI) stress in rice. The rice variety IR-64 was germinated and allowed to grow for 5 d at 37 C and then transferred to Hewitt solution for growth. After 10 d of growth, seedlings of uniform size and growth were treated with 100 µM of Cr (VI), As (V), Cd, and Pb under standard physiological conditions of 16 h light (115 μmol m−2 s−1) and 8 h dark photoperiod at 25 ± 2 C for 24 h. Total RNA was extracted from the treated rice roots and microarray was performed using one-cycle target labeling and control reagents (Affymetrix platform).
Project description:In this study, we used RNA-Seq to understand the mechanisms of Cd toxicity, cellular detoxification and protection pathways in response to Cd in rice roots. To gain additional insight into the rice transcriptomic response to environmental Cd stress, 15-day-old rice seedlings were treated with 10 or 100 μM solutions of Cd2+, or without Cd (control), for 24 h, at which point root samples were harvested and labeled as Cd+, Cd++, and control, respectively. These samples were used for 101 bp paired-end (PE) deep sequencing on an Illumina HiSeq 2500 platform.
Project description:Oryza sativa Indica group IR29 (salt sensitive) seedlings were subjected to salt stress or control conditions and sampled at five time points over the course of 24 hours. RNA samples extracted were assayed using the Illumina HiSeq 2000 platform.