Project description:Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honeybee health worldwide. The present study investigates the transcriptional response of this Gram-positive, endospore-forming bacterium to bodily fluids from honeybee larvae. Four different conditions were evaluated with a loop design: sampling of in vitro grown P. larvae cultures one or four hours after addition of larval fluids or BHIT-broth (C1, T1, C4, T4).
Project description:Self-resistance mechanism mediated by N-acetyltransferase PamZ by deactivation of own antibacterial agent paenilamicin in Paenibacillus larvae, the causative agent of the honey bee disease American Foulbrood.
Project description:Using whole genome sequencing and phylogenomic techniques to trace and characterise American foulbrood outbreaks within honeybee populations of south-eastern Australia
Project description:There were important gaps in our knowledge of Israeli acute paralysis virus (IAPV), when IAPV was tightly linked to bee Colony Collapse Disorder (CCD), the mysterious disease that, starting in 2006-2007, has been wiping out honey bees in the US. To fill in these gaps we studied the molecular basis of transmission, pathogenesis, and genetic diversity of IAPV infection in honey bees. We investigated the impact of IAPV infection on colony losses and host transcriptional response to IAPV infections, and exploited the potential of RNAi-based strategies for treating viral diseases in honey bees. Our study clearly shows that IAPV has become established as a persistent infection and is highly prevalent in the honey bee population. The existence of both horizontal and vertical transmission pathways of the virus likely accounts for the high prevalence of IAPV in bees. While IAPV is probably not the only culprit responsible for CCD, its ability to cause increased mortality in honey bees is firmly demonstrated. The phenotypic differences in pathology among different strains of IAPV may be due to their high level of standing genetic variation. The JAK-STAT pathway, along with other signaling events such as mTOR and MAPK pathways, likely involves honey bees’ antiviral immune responses to the IAPV infection. The identification of IAPV-encoded putative suppressor of RNAi and evidence that silencing the RNAi suppressor led to a significant reduction in IAPV replication in infected bees illustrates the therapeutic potential of targeting viral suppressor protein to reduce virus replication. Our study gives direction for developing strategies to reduce colony losses due to viral diseases.
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees.
Project description:Background: Honey bee is a major insect used for pollination of a number of commercial crops worldwide. However, the number of managed honey bee colonies has recently declined in several countries, and a number of possible causes are proposed. Although the use of honey bees for pollination can be considered as disruption of the habitat, its effects on honey bees' physiology have never been addressed. In Japan, more than 100 thousands colonies are annually used for pollination, and intriguingly 80% of them are used in greenhouses. Recently, honey bee colonies have often collapsed when they are introduced into greenhouses. Thus, to suppress colony collapses and maintain the number of worker bees in the colonies are essential for successful long-term pollination in greenhouses and recycling honey bee colonies.
2011-05-12 | GSE29252 | GEO
Project description:Sequencing of bacterial composition in honey bee larvae infected with American foulbrood disease