Project description:4 samples from 9 brain regions Brain tissue from the New South Wales Tissue Resource Centre, 9 brain regions, 4 samples each: 1 male alcoholic, 1 female alcoholic, 1 male control, 1 female control. Brain regions: pre-frontal cortex, cerebral cortex, visual cortex, thalamus, hippocampus, amygdala, caudate nucleus, putamen, cerebellum
Project description:Cap analysis of gene expression (CAGE) and massive parallel sequencing were used to profile the promoterome of aged human brains from five regions, namely: caudate, frontal cortex, hippocampus, putamen and temporal cortex. 25 RNA libraries from post-mortem brain tissue (five caudate, five frontal, 5 hippocampus, 5 putamen, five temporal RNA libraries from seven individuals) were processed using CAGE protocol and CAGE tags derived from the 25 libraries were sequenced with Illumina.
Project description:Cap analysis of gene expression (CAGE) and massive parallel sequencing were used to profile the promoterome of aged human brains from five regions, namely: caudate, frontal cortex, hippocampus, putamen and temporal cortex.
Project description:The ability to use blood to predict the outcomes of Parkinson’s disease (PD), including disease progression and development of cognitive and motor complications, would be of enormous clinical value. We undertook deep RNA sequencing from the caudate and putamen of postmortem PD (n=35) and control (n=40) striatum, and compared molecular profiles with clinical features, and samples obtained from antemortem peripheral blood from an independent cohort. Cognitive and motor complications of PD were associated with molecular changes in the caudate (e.g., stress response) and putamen (endothelial pathways) respectively. Later and earlier-onset PD were molecularly distinct, and disease duration was associated with changes in caudate (oligodendrocyte development) and putamen (cellular senescence) respectively. Molecular signatures in the postmortem PD brain were also evident in antemortem peripheral blood, and correlated with clinical disease features. Together, these findings identify molecular signatures in PD patients' brain and blood of potential pathophysiologic and prognostic importance
Project description:We analyzed transcriptome differences in postmortem caudate and putamen from controls (n=40) and PD (n=35) as confirmed by autopsy. Further, we analyzed region specific differences in caudate and putamen associated with clinical variables.
Project description:The main goal of the study was to measure the epigenetic age (also known as DNA methylation age) of human tissues and to relate it to chronological age. Toward this end, we used the epigenetic clock software described in Horvath S (n=2013) DNA methylation age of human tissues and cell types. Genome Biology.2013, 14:R115. DOI: 10.1186/10.1186/gb-2013-14-10-r115 PMID: 24138928 Human DNA methylation Beadchip v1.2 was used to obtain n=260 Illumina DNA methylation array from the following human Brain regions: caudate nucleus (n=n=12), cingulate gyrus (n=n12), cerebellum (n=32), frontal cortex (n=41), hippocampus (n=25), midBrain (n=18), motor cortex (n=33), occipital cortex (n=33), parietal lobe (n=23), sensory cortex (n=12), temporal cortex (n=29), visual cortex (n=11).
Project description:TBI was induced with lateral fluid-percussion injury in adult male rats. MBD-seq of the perilesional cortex, ipsilateral thalamus and ipsilateral hippocampus was performed at 3 months post-TBI. The data was used to identify differential methylation of gene promoter, gene body, and exons in the perilesional cortex , thalamus and hippocampus.
Project description:Brain samples for this dataset were provided by the Medical Research Council Sudden Death Brain and Tissue Bank (Edinburgh, UK).
All four individuals sampled were of European descent, neurologically normal during life and confirmed to be neuropathologically normal by a consultant neuropathologist using histology performed on sections prepared from paraffin-embedded tissue blocks. Twelve regions of the central nervous system were sampled from each individual. The regions studied were: cerebellar cortex, frontal cortex, temporal cortex, occipital cortex, hippocampus, the inferior olivary nucleus (sub-dissected from the medulla), putamen, substantia nigra, thalamus, hypothalamus, intralobular white matter and cervical spinal cord.
Project description:Electrical brain stimulation (EBS) has gained popularity for laboratory and clinical applications. However, comprehensive characterization of the cellular diversity and cell type-specific gene expression changes induced by EBS remains limited, particularly with respect to specific brain regions and stimulation sites. In this study, we present the first single-nucleus RNA sequencing (snRNA-seq) profiles of rat cortex, hippocampus, and thalamus subjected to alternating current electrical stimulation (ACES) at 40 Hz.