Project description:A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumor of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumors, immortalized ovarian surface epithelial cells, and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantitation of > 10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II), and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic dataset, as well as a confirmatory publicly available CPTAC/TCGA tumor proteome dataset, into a predominantly epithelial and mesenchymal HGSOC tumor cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumors indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium.
Project description:A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumor of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumors, immortalized ovarian surface epithelial cells, and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantitation of > 10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II), and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic dataset, as well as a confirmatory publicly available CPTAC/TCGA tumor proteome dataset, into a predominantly epithelial and mesenchymal HGSOC tumor cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumors indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium.
Project description:Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and aggressive form of ovarian cancer. SCCOHT tumors have inactivating mutations in SMARCA4 (BRG1), one of the two mutually exclusive ATPases of the SWI/SNF chromatin remodeling complex. To address the role that BRG1 loss plays in SCCOHT tumorigenesis, we performed integrative multi-omic analyses in SCCOHT cell lines +/- BRG1 re-expression. BRG1 re-expression induced a gene and protein signature similar to an epithelial cell and gained chromatin accessibility sites correlated with other epithelial originating TCGA tumors. Furthermore, AP-1 motifs were enriched at the promoters of highly upregulated epithelial genes. Using a dominant negative AP-1 cell line, we found that both AP-1 DNA binding activity and BRG1 re-expression are necessary for the gene and protein expression of epithelial genes. Our study demonstrates that BRG1 re-expression drives an epithelial-like gene and protein signature in SCCOHT cells that depends upon AP-1 activity.
Project description:The hallmark of human cancer is heterogeneity, mirroring the complexity of genetic and epigenetic alterations acquired during oncogenesis. We extracted RNA of 34 cultured human ovarian carcinoma cell lines and performed expression microarrays so that cultured cell lines can represent in vivo human tumors. 34 ovarian carcinoma cell lines expression data.
Project description:Background: Ovarian carcinomas consist of at least five distinct diseases: high-grade serous, low-grade serous, clear cell, endometrioid, and mucinous. Biomarker and molecular characterization may represent a more biologically relevant basis for grouping and treating this family of tumors, rather than site of origin. Molecular characteristics have become the new standard for clinical pathology, however development of tailored type-specific therapies is hampered by a failure of basic research to recognize that model systems used to study these diseases must also be stratified. Unrelated model systems do offer value for study of biochemical processes but specific cellular context needs to be applied to assess relevant therapeutic strategies. Methods: We have focused on the identification of clear cell carcinoma cell line models. A panel of 32 “ovarian cancer” cell lines has been classified into histological types using a combination of mutation profiles, IHC mutation-surrogates, and a validated immunohistochemical model. All cell lines were identity verified using STR analysis. Results: Many described ovarian clear cell lines have characteristic mutations (including ARID1A and PIK3CA) and an overall molecular/immuno-profile typical of primary tumors. Mutations in TP53 were present in the majority of high-grade serous cell lines. Advanced genomic analysis of bona-fide clear cell carcinoma cell lines also support copy number changes in typical biomarkers such at MET and HNF1B and a lack of any recurrent expressed re-arrangements. Conclusions: As with primary ovarian tumors, mutation status of cancer genes like ARID1A and TP53 and a general immuno-profile serve well for establishing histological type of ovarian cancer cell We describe specific biomarkers and molecular features to re-classify generic “ovarian carcinoma” cell lines into type specific categories. Our data supports the use of prototype clear cell lines, such as TOV21G and JHOC-5, and questions the use of SKOV3 and A2780 as models of high-grade serous carcinoma.
Project description:Clear cell ovarian carcinoma (CCOC) is the second most common subtype of epithelial ovarian carcinoma. Late stage CCOC is not responsive to gold-standard chemotherapy and result in suboptimal outcome for patients. In-depth molecular insight is urgently needed to stratify the disease and drive therapeutic development. We conducted global proteomics in 192 cases of CCOC comparing to other epithelial ovarian carcinoma subtypes.
Project description:To investigate the microRNA profiles of ovarian clear cell carcinoma (OCCC), microRNA sequencing was performed using formalin-fixed, paraffin-embedded (FFPE) and fresh-frozen clinical samples. Moreover, patient-derived xenograft (PDX) tumors and cell lines were also investigated.
Project description:ARID1A, which encodes a component of the SWI/SNF chromatin-remodeling complex, is commonly mutated in ovarian clear cell carcinoma and many other cancer types. We used label-free LC-MS/MS to identify ARID1A-dependent proteome changes in ovarian clear cell carcinoma cell lines. In our first analysis, we compared ARID1A-wildtype ovarian clear cell carcinoma cell line OVCA429 with or without ARID1A CRISPR knockout. In a complementary analysis, we compared ARID1A-mutated ovarian clear cell carcinoma cell line OVISE with or without ARID1A overexpression using a tet-inducible promoter.
Project description:Fallopian tube epithelium is the tissue-of-origin of most high grade serous papillary ovarian carcinoma. This tumor has been exensively investigated and sequenced but expression profiling data of normal fallopian tube epithelial cells is still rare. This project compares the miRNA profiles of high grade serous papillary ovarian tumors (FFPE and fresh frozen) to that of normal unmatched epithelial cells from resected fallopian tubes.