Project description:The nematode Caenorhabditis elegans has evolutionarily conserved EV signaling pathways. In this study, we apply a recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of EVs from C. elegans. Our experiments uncovered diverse coding and non-coding RNA transcripts as well as protein cargo types commonly found in human EVs.
Project description:We have adapted the eXcision Repair-sequencing (XR-seq) method to generate single-nucleotide resolution dynamic repair maps of UV-induced cyclobutane pyrimidine dimers (CPD) photoproducts in the Caenorhabditis elegans (C. elegans) genome.
Project description:This SuperSeries is composed of the following subset Series: GSE21008: Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans: atrazine GSE21010: Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans: cadmium GSE21011: Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans: fluoranthene Refer to individual Series