Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion.
Project description:This SuperSeries is composed of the SubSeries listed below. Due to privacy concerns, the SNP data is not available with unrestricted access. Refer to individual Series
Project description:To unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis. 247 peripheral blood RNA samples from 18 prediabetic children and their matched controls were analyzed with Illumina Human HT-12 Expression BeadChips version 3 arrays, in order to study the gene expression changes occuring during the pathogenesis of Type 1 diabetes (T1D). Each case child (with T1D-specific autoantibodies) was matched with a persistently autoantibody-negative control child, with the same HLA-DQB1 risk category, gender, and place and date of birth. Two control children were selected for T1D cases 3, 5, 13 and 17. Seroconversion is determined as the first detection of T1D-specific autoantibody/autoantibodies (ICA titre >4 JDFU, IAA >3.47 RU, GADA >5.4 RU, IA-2A >0.43 RU, ZnT8A >0.61 RU).
Project description:This SuperSeries is composed of the SubSeries listed below. Due to privacy concerns, the SNP data is not available with unrestricted access.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)
Project description:Transfer RNAs (tRNAs) play a central and well recognized role in protein synthesis. Recent studies revealed that these molecules can be cleaved to generate tRNA fragments (tRFs) with regulatory functions. Here, we studied the contribution of tRFs to pancreatic β-cell loss during the initial phases of type 1 diabetes (T1D), an autoimmune disorder characterized by the invation of immune cells in the pancreas and progressive loss of insulin-secreting cells. Small RNA-profiling showed that the pool of tRFs present in pancreatic β-cells is altered in non-obese diabetic (NOD) mice, a mouse model used to study T1D. We found that part of these changes is triggered by the exposure of β-cells to proinflammatory cytokines released during the autoimmune reaction while others result from the direct transfer of tRFs from autoreactive T lymphocytes to insulin-secreting cells via extracellular vesicles. Indeed, using an RNA-tagging approach, we could demonstrate that a group of tRFs are transferred in vivo in from CD4+CD25- T lymphocytes to pancreatic β-cells, upon T cell adoptive transfer in NOD scid mice. Morevoer, the up-regulation of selected tRFs associated with the autoimmune reaction triggers β-cell apoptosis and gene expression changes that affect the immune regulatory capacity of β-cells. Our data point to tRFs as novel players in type 1 diabetes and potentially in other autoimmune disorders.
Project description:Transfer RNAs (tRNAs) play a central and well recognized role in protein synthesis. Recent studies revealed that these molecules can be cleaved to generate tRNA fragments (tRFs) with regulatory functions. Here, we studied the contribution of tRFs to pancreatic β-cell loss during the initial phases of type 1 diabetes (T1D), an autoimmune disorder characterized by the invation of immune cells in the pancreas and progressive loss of insulin-secreting cells. Small RNA-profiling showed that the pool of tRFs present in pancreatic β-cells is altered in non-obese diabetic (NOD) mice, a mouse model used to study T1D. We found that part of these changes is triggered by the exposure of β-cells to proinflammatory cytokines released during the autoimmune reaction while others result from the direct transfer of tRFs from autoreactive T lymphocytes to insulin-secreting cells via extracellular vesicles. Indeed, using an RNA-tagging approach, we could demonstrate that a group of tRFs are transferred in vivo in from CD4+CD25- T lymphocytes to pancreatic β-cells, upon T cell adoptive transfer in NOD scid mice. Morevoer, the up-regulation of selected tRFs associated with the autoimmune reaction triggers β-cell apoptosis and gene expression changes that affect the immune regulatory capacity of β-cells. Our data point to tRFs as novel players in type 1 diabetes and potentially in other autoimmune disorders.