Project description:Transcriptome analysis of freshly sorted regulatory T cells (CD4+CD25+) and conventional T cells (CD4+CD25-) and of expansion cultures of regulatory T cells (CD4+CD25+CD45RA+) and conventional T cells (CD4+CD25-). Three biological replicates were performed of freshly sorted Treg and Tconv cells each. Four replicates of Treg expansion cultures sorted into CD45RA+/- subpopulations prior to RNA extraction were performed.
Project description:CD4+CD25+FOXP3+ human regulatory T cells (Treg) are essential for self-tolerance and immune homeostasis. Here, we generated genome-wide maps of poised and active enhancer elements marked by histone H3 lysine 4 monomethylation and histone H3 lysine 27 acetylation for CD4+CD25highCD45RA+ naive and CD4+CD25highCD45RA- memory Treg and their CD25- conventional T cell (Tconv) counterparts after in vitro expansion . In addition we generated genome-wide maps of the transcription factors STAT5, FOXP3, RUNX1 and ETS1 in expanded CD4+CD25highCD45RA+ Treg- and CD4+CD25- Tconv to elucidate their role in cell type-specific gene regulation. ChIP-seq of 2 histone marks and transcription factors ETS1, STAT5, FOXP3 and RUNX1 in expanded T cell subpopulations
Project description:CD4+CD25+FOXP3+ human regulatory T cells (Treg) are essential for self-tolerance and immune homeostasis. Here, we generated genome-wide maps of poised and active enhancer elements marked by histone H3 lysine 4 monomethylation and histone H3 lysine 27 acetylation for CD4+CD25highCD45RA+ naive and CD4+CD25highCD45RA- memory Treg and their CD25- conventional T cell (Tconv) counterparts after in vitro expansion . In addition we generated genome-wide maps of the transcription factors STAT5, FOXP3, RUNX1 and ETS1 in expanded CD4+CD25highCD45RA+ Treg- and CD4+CD25- Tconv to elucidate their role in cell type-specific gene regulation.
Project description:The NOD (nonobese diabetic) mouse strain develops a characteristic autoimmune syndrome that closely resembles human type I diabetes. It has been suggested that NOD mice exhibit both numerical deficiency in CD4+CD25+ regulatory T cells (Treg) and reduced suppressive activity. We compared sorted CD4+CD25+ Tregs from the spleens of 6-7 week-old female NOD and nondiabetic B6.H2g7 mice. Tregs were 93±2% and 95±1% Foxp3+ in NOD and B6.H2g7 cells, respectively, on post-sort reanalysis. "Conventional" CD4+CD25- T cells (Tconv) are included as reference populations. Surprisingly, Treg "signature" is similar between the two strains, with only a few probesets that subtly deviate. Keywords: Cell population comparison from two mouse strains. For each strain (NOD and B6.g7), we analyzed two populations: CD4+CD25+ Treg and CD4+CD25- Tconv cells, for a total of four distinct populations. RNA from three mice were pooled for each replicate; there are three independent replicates for each population. After RMA normalization, intensity values were averaged across the three replicates and analyzed. We calculated the ratio of Treg/Tconv intensity values for each strain and compared the results.
Project description:Analysis of Histone H3 Lysine 4 mono-, di- and trimethyl and the boundary protein CTCF in CD4+CD25+CD45RA+ regulatory T-cells and conventional CD4+CD25- T-cells. To investigate regulatory functions or potential new transcription start sites in Treg and Tconv cells, we investigated the associated histone modifications. Mono- and dimethylation of histone 3 lysin 4 (H3K4) were previously shown to mark enhancer regions, whereas H3K4 trimethylation generally associates with transcription start sites. At imprinted loci, binding of the insulator protein CTCF, which restricts or directs enhancer-promoter interactions, is often regulated by DNA-methylation. Therefore we performed ChIP-on-chip experiments (chromatin immunoprecipitation followed by microarray hybridization; samples were amplified with ligation mediated PCR [see label protocol for the procedure] prior to labeling) for mono- di- and trimethylation of histone 3 lysin 4 and of CTCF in expanded Treg and Tconv cells. Keywords: ChIP-on-chip ChIP-on-chip experiments for H3K4 mono-, di- and trimethyl and CTCF in CD4+CD25+CD45RA+ regulatory T-cells and conventional CD4+CD25- T-cells were co-hybridizied with the input. Three biologiacal replicates (rep1-3) were performed for every histone mark, two CTCF (rep1 and rep2).
Project description:The CD4+ regulatory T (Treg) cell lineage comprises thymus-derived (t)Treg cells and peripherally induced (p)Treg cells. As a model for Treg cells, studies employ TGF-β-induced (i)Treg cells generated from CD4+ conventional T (Tconv) cells in vitro. Here, we describe the relationship of iTreg cells to tTreg and Tconv cells. Proteomic analysis revealed that iTreg, tTreg and Tconv cell populations each have a unique protein expression pattern. iTreg cells had very limited overlap in protein expression with tTreg cells, regardless of cell activation status and instead shared signaling and metabolic proteins with Tconv cells. tTreg cells had a uniquely modest response to CD3/CD28-mediated stimulation. As a benchmark, we used a previously defined proteomic signature that sets ex vivo naïve and effector phenotype Treg cells apart from Tconv cells and includes unique Treg cell properties (Cuadrado et al., Immunity, 2018). This Treg cell core signature was largely absent in iTreg cells. We also used a proteomic signature that distinguishes ex vivo effector Treg cells from Tconv cells and naïve Treg cells. This effector Treg cell signature was partially present in iTreg cells. In conclusion, iTreg cells are distinct from tTreg cells and share limited features with ex vivo Treg cells at the proteomic level.
Project description:Regulatory T cells (Treg) contribute to the crucial immunological processes of self-tolerance and immune homeostasis. However, the mechanisms underlying Treg function and cell fate decisions to differentiate between Treg and conventional T cells (Tconv) remain to be fully elucidated, especially at the histone modification level. Covalent modifications of histones establish and maintain chromatin structure, and regulate gene transcription events by facilitating access to cis-elements by trans-acting factors during mammalian development and cellular differentiation. We aimed to investigate the role of the methylation form of histone modification as related to Treg function and phenotype. High-resolution maps of the genome-wide distribution of monomethylated histone H3 lysine 4, H3K4me1, and the trimethylated form H3K4me3 were generated for human activated conventional CD4+CD25+FOXP3- T cells (aTconv) and CD4+CD25+FOXP3+ regulatory T cells (Treg) by sequencing using the Solexa 1G Genetic Analyzer. We found 2115 H3K4me3 regions corresponding to proximal promoter regions; the genes associated with these regions in Treg cells included the crucial transcription factor forkhead box P3 (FOXP3) and the chemokine receptor CCR7. We also identified 41024 Treg cell type-specific H3K4me1 regions. The majority of the H3K4me1 regions differing between the Treg and aTconv cells were located at promoter-distal sites, some of which were selected and consolidated to further examine enhancer activity in in vitro reporter gene assays. The findings from our study provide a comprehensive genome-wide dataset of lineage-specific H3K4me1 and H3K4me3 patterns in Treg and aTconv cells, which may control the differentiation decision, lineage commitment and cell type-specific gene regulation. This basic principle is likely not confined to the two closely-related T cell populations, but may apply generally to somatic cell lineages in adult organisms. Genome-wide distribution of monomethylated histone H3 lysine 4, H3K4me1, and the trimethylated form H3K4me3 in human activated conventional CD4+CD25+FOXP3- T cells (aTconv) and CD4+CD25+FOXP3+ regulatory T cells (Treg) (5 samples in total)
Project description:The NOD (nonobese diabetic) mouse strain develops a characteristic autoimmune syndrome that closely resembles human type I diabetes. It has been suggested that NOD mice exhibit both numerical deficiency in CD4+CD25+ regulatory T cells (Treg) and reduced suppressive activity. We compared sorted CD4+CD25+ Tregs from the spleens of 6-7 week-old female NOD and nondiabetic B6.H2g7 mice. Tregs were 93±2% and 95±1% Foxp3+ in NOD and B6.H2g7 cells, respectively, on post-sort reanalysis. "Conventional" CD4+CD25- T cells (Tconv) are included as reference populations. Surprisingly, Treg "signature" is similar between the two strains, with only a few probesets that subtly deviate. Keywords: Cell population comparison from two mouse strains.
Project description:The objective of this study is to compare transcriptional features in tumor-infiltrating (TI) regulatory T (Treg) cells with TI CD4+ conventional T (Tconv) cells, splenic Treg cells of tumor-bearing mice, splenic Tconv cells of tumor-bearing mice, splenic Treg cells of normal mice, or splenic Tconv cells of normal mice.
Project description:To identify patterns of gene expression within six broadly defined cell populations, we also performed cell sorting for bulk RNA-sequencing including compartments denoted: 1. “Live”: All viable cells at the time of sorting, 2. “Tconv”: sorted conventional CD4+ and CD8+ T cells, 3. “Treg”: CD25+ CD4+ (enriched for regulatory) T cells, 4. “Myeloid”: Lymphocyte-negative HLA-DR+ (enriched for myeloid) cells, 5. “Stromal”: CD45- CD44+Thy1+ cells, and 6. “Tumor”: all other CD45- cells