Project description:Here we show through genome-wide binding studies that transcription factor 7-like 1 (TCF7L1) represses structure-related genes during adipogenesis. Intriguingly, TCF7L1 is induced in a cell contact-dependent manner by confluency in preadipocytes and is required for adipocyte differentiation by repressing transcription of cell structure genes. TCF7L1 is also sufficient to bestow adipogenic potential upon non-adipogenic cells. These results implicate TCF7L1 as a novel adipogenic competency factor that uniquely determines adipogenic fate through cell structure organization required for adipocyte gene activation. Examination of TCF7L1 binding in preadipocytes treated for 24 hours with adipogenic stimuli.
Project description:Here we show through genome-wide binding studies that transcription factor 7-like 1 (TCF7L1) represses structure-related genes during adipogenesis. Intriguingly, TCF7L1 is induced in a cell contact-dependent manner by confluency in preadipocytes and is required for adipocyte differentiation by repressing transcription of cell structure genes. TCF7L1 is also sufficient to bestow adipogenic potential upon non-adipogenic cells. These results implicate TCF7L1 as a novel adipogenic competency factor that uniquely determines adipogenic fate through cell structure organization required for adipocyte gene activation.
Project description:Genome-wide profiling of PPAR?:RXR and RNA polymerase II reveals temporal activation of distinct metabolic pathways in RXR dimer composition during adipogenesis. Chromatin immunoprecipitation combined with deep sequencing was performed to generate genome-wide maps of peroxisome prolifelator-activated receptor gamma (PPARg) and retinoid X receptor (RXR) binding sites, and RNA polymerase II (RNAPII) occupancy at high resolution throughout adipocyte differentiation of 3T3-L1 cells. The data provides the first positional and temporal map PPAR? and RXR occupancy during adipocyte differentiation at a global scale. The number of PPAR?:RXR shared binding sites is steadily increasing from D0 to D6. At Day6 there are over 5000 high confidence shared PPARy:RXR binding sites. We show that at the early days of differentiation several of these sites bind not only PPAR?:RXR but also other RXR dimers. The data also provides a comprehensive temporal map of RNAPII occupancy at genes throughout 3T3-L1 adipogenesis thereby uncovering groups of similarly regulated genes belonging to glucose and lipid metabolic pathways. The majority of the upregulated but very few downregulated genes have assigned PPAR?:RXR target sites, thereby underscoring the importance of PPAR?:RXR in gene activation during adipogenesis and indicating that a hitherto unrecognized high number of adipocyte genes are directly activated by PPAR?:RXR Examination of PPARg and RXR bindingsites during adipocyte differentiation (day 0 to 6) and association with transcription via RNAPII occupancy.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.