Project description:Arabidopsis seedling were exposed in co-culture to E. amylovora mVOC and data show that mVOCs promote plant growth and early responses
Project description:Arabidopsis thaliana ecotypes Columbia (Col-0) (wild type: WT) was used in this study. After sterilization, the seeds were placed on Murashige and Skoog medium supplemented with 2% (w/v) sucrose for 10 days and then the seedling were transferred to soil under 16 hours light (22°C) / 8 hours dark (18°C) period in growth chamber at a light intensity of 120?150 µmol m-2 s-1. 20-day-old Arabidopsis leaves without bolting were immediately frozen in liquid nitrogen for RNA and protein and metabolites extraction. Leaves were harvested at three different time points: t = 0 hr (end of night), t = 1 hr (one hour after light turn on) and t = 8 hr (eight hours after light turn on), respectively.
Project description:Arabidopsis thaliana ecotypes Columbia (overexpression line) was used in this study. After sterilization, the seeds were placed on Murashige and Skoog medium supplemented with 2% (w/v) sucrose for 10 days and then the seedling were transferred to soil under 16 hours light (22°C) / 8 hours dark (18°C) period in growth chamber at a light intensity of 120?150 µmol m-2 s-1. 20-day-old Arabidopsis leaves without bolting were immediately frozen in liquid nitrogen for RNA and protein and metabolites extraction. Leaves were harvested at three different time points: t = 0 hr (end of night), t = 1 hr (one hour after light turn on) and t = 8 hr (eight hours after light turn on), respectively.
Project description:Injured plant somatic tissues regenerate themselves by establishing the shoot or root meristems. In Arabidopsis (Arabidopsis thaliana) a two-step culture system ensures regeneration by first promoting the acquisition of pluripotency and subsequently specifying the fate of new meristems. Although previous studies have reported the importance of phytohormones auxin and cytokinin in determining the fate of new meristems, it remains elusive whether and how the environmental factors influence this process. In this study, we investigated the impact of light signals on shoot regeneration using Arabidopsis hypocotyl as explants. We found that light signals promote shoot regeneration while inhibiting root formation. ELONGATED HYPOCOTYL 5 (HY5), the pivotal transcriptional factor in light signaling, plays a central role in this process by mediating the expression of key genes controlling the fate of new meristems. Specifically, HY5 directly represses root development genes and activates shoot meristem genes, leading to the establishment of shoot progenitor from pluripotent callus. We further demonstrated that the early activation of photosynthesis is critical for shoot initiation, and this is transcriptionally regulated downstream of the HY5-dependent pathways. In conclusion, we uncovered the intricate molecular mechanisms by which light signals control the establishment of new meristem through the regulatory network governed by HY5, thus, highlighting the influence of light signals on plant developmental plasticity.