Project description:Atopic dermatitis (AD) is a common inflammatory skin disease with a T(H)2 and T22 immune polarity. Despite recent data showing a genetic predisposition to epidermal barrier defects in some patients, a fundamental debate still exists regarding the role of barrier abnormalities versus immune responses in initiating the disease. An extensive study of nonlesional AD (ANL) skin is necessary to explore whether there is an intrinsic predisposition to barrier abnormalities, background immune activation, or both in patients with AD. We sought to characterize ANL skin by determining whether epidermal differentiation and immune abnormalities that characterize lesional AD (AL) skin are also reflected in ANL skin. We performed genomic and histologic profiling of both ANL and AL skin lesions (n = 12 each) compared with normal human skin (n = 10). We found that ANL skin is clearly distinct from normal skin with respect to terminal differentiation and some immune abnormalities and that it has a cutaneous expansion of T cells. We also showed that ANL skin has a variable immune phenotype, which is largely determined by disease extent and severity. Whereas broad terminal differentiation abnormalities were largely similar between involved and uninvolved AD skin, perhaps accounting for the background skin phenotype, increased expression of immune-related genes was among the most obvious differences between AL and ANL skin, potentially reflecting the clinical disease phenotype. Our study implies that systemic immune activation might play a role in alteration of the normal epidermal phenotype, as suggested by the high correlation in expression of immune genes in ANL skin with the disease severity index. Genomic profile of paired samples of ANL and AL skin lesions from 12 patients compared with normal human skin (n = 8). For some patients, only 1 sample was available.
Project description:Atopic dermatitis (AD) is a common inflammatory skin disease with a T(H)2 and T22 immune polarity. Despite recent data showing a genetic predisposition to epidermal barrier defects in some patients, a fundamental debate still exists regarding the role of barrier abnormalities versus immune responses in initiating the disease. An extensive study of nonlesional AD (ANL) skin is necessary to explore whether there is an intrinsic predisposition to barrier abnormalities, background immune activation, or both in patients with AD. We sought to characterize ANL skin by determining whether epidermal differentiation and immune abnormalities that characterize lesional AD (AL) skin are also reflected in ANL skin. We performed genomic and histologic profiling of both ANL and AL skin lesions (n = 12 each) compared with normal human skin (n = 10). We found that ANL skin is clearly distinct from normal skin with respect to terminal differentiation and some immune abnormalities and that it has a cutaneous expansion of T cells. We also showed that ANL skin has a variable immune phenotype, which is largely determined by disease extent and severity. Whereas broad terminal differentiation abnormalities were largely similar between involved and uninvolved AD skin, perhaps accounting for the background skin phenotype, increased expression of immune-related genes was among the most obvious differences between AL and ANL skin, potentially reflecting the clinical disease phenotype. Our study implies that systemic immune activation might play a role in alteration of the normal epidermal phenotype, as suggested by the high correlation in expression of immune genes in ANL skin with the disease severity index.
Project description:Atopic dermatitis (AD) is a common pruritic dermatitis with macroscopically nonlesional skin that is often abnormal. Therefore, we used high-density oligonucleotide arrays to identify cutaneous gene transcription changes associated with early AD inflammation as potential disease control targets. Skin biopsy specimens analyzed included normal skin from five healthy nonatopic adults and both minimally lesional skin and nearby or contralateral nonlesional skin from six adult AD patients. Keywords: disease state analysis
Project description:Atopic dermatitis (AD) is a common pruritic dermatitis with macroscopically nonlesional skin that is often abnormal. Therefore, we used high-density oligonucleotide arrays to identify cutaneous gene transcription changes associated with early AD inflammation as potential disease control targets. Skin biopsy specimens analyzed included normal skin from five healthy nonatopic adults and both minimally lesional skin and nearby or contralateral nonlesional skin from six adult AD patients. Keywords: disease state analysis We used high-density oligonucleotide Affymetrix Human U133A GeneChip arrays to identify cutaneous gene transcription changes associated with early AD inflammation as potential disease control targets. Skin biopsy specimens analyzed included normal skin from five healthy nonatopic adults and both minimally lesional skin and nearby or contralateral nonlesional skin from six adult AD patients.
Project description:Clinical overlaps between psoriasis and atopic dermatitis are sometimes undiscernible, and there is no consensus whether to treat the overlap phenotype as psoriasis or atopic dermatitis. We enrolled patients diagnosed with either psoriasis or atopic dermatitis, and clinically re-stratified them into classic psoriasis, classic atopic dermatitis, and the overlap phenotype between psoriasis and atopic dermatitis. We compared gene expression profiles of lesional and nonlesional skin biopsy tissues between the three comparison groups. Global mRNA expression and T-cell subset cytokine expression in the skin of the overlap phenotype were consistent with the profiles of psoriasis and different from the profiles of atopic dermatitis. Unsupervised k-means clustering indicated that the best number of distinct clusters for the total population of the three comparison groups was two, and the two clusters of psoriasis and atopic dermatitis were differentiated by gene expression. Our study suggests that clinical overlap phenotype between psoriasis and atopic dermatitis has dominant molecular features of psoriasis, and genomic biomarkers can differentiate psoriasis and atopic dermatitis at molecular levels in patients with a spectrum of psoriasis and atopic dermatitis.
Project description:Purpose: To determine the transcriptional differences between lesional skin and nonlesional skin from patients with atopic dermatitis Methods: Skin biopsies of lesional and non-lesional sites on atopic dermatitis patients were obtained and stored in RNA Later. Ribosomal RNA was removed and cDNA was generated with the SMARTer kit (CloneTech) with 10 ng of total RNA per sample. Samples were sequenced to an average depth of 34 million 1x50 reads on a HiSeq3000 (Illumina). Reads were aligned to Ensembl release 76 using STAR, gene counts were determined with Subread:featureCount, and sequence performance was assessed with RSeQC.
Project description:Lipids play a critical role in the skin as components of the epidermal barrier and as sig-naling molecules. Atopic dermatitis in dogs is associated with changes in the lipid composition of the skin, but whether these precede the onset of dermatitis or occur secondary to the dermatitis is unclear. We applied rapid lipid profiling mass spectrometry methods to skin and blood samples of dogs and determined changes following systemic treatment. Thirty control dogs and 30 atopic dogs with mild to moderate dermatitis were enrolled. Marked differences in lipid profiles were observed between control, nonlesional and lesional skin of dogs. Additionally, there were significant altera-tions in the lipid composition of the blood samples indicating systemic changes in lipid metabolism. Treatment with oclacitinib or lokivetmab resulted in a significant decrease of the disease clinical severity associated with changes in skin and blood lipids. A set of lipid features of the skin were selected as biomarkers that classified samples as control or atopic dermatitis with 95% accuracy, whereas blood lipids discriminated between control and atopic dogs with 82% accuracy. These data suggest that atopic dermatitis is a systemic disease and support the use of rapid lipid profiling to identify novel biomarkers.
Project description:Insight into the pathophysiology of inflammatory skin diseases, especially at the proteomic level, is severely hampered by the lack of adequate in situ data. Skin microdialysis samples from patients with atopic dermatitis (AD, n=6), psoriasis vulgaris (PSO, n=7) or prurigo nodularis (PN, n=6), as well as healthy controls (n=7) were subjected to proteomics and multiplex cytokine analysis. Single-cell RNA sequencing of skin biopsy specimens was used to identify the cellular origin of cytokines. Among the top 20 enriched GO annotations, NAD metabolic process, regulation of secretion by cell, and pyruvate metabolic process were elevated in microdialysates from lesional AD skin compared with both nonlesional skin and controls. The top 20 enriched KEGG pathways in these three groups overlapped almost completely. In contrast, nonlesional skin from patients with PSO or PN and control skin showed no overlap with lesional skin in this KEGG pathway analysis. Lesional skin from patients with PSO, but not AD or PN, showed significantly elevated protein levels of IL-22 and MCP-1 compared to nonlesional skin. IL-8 was elevated in lesional vs nonlesional AD and PSO skin, whereas IL-12p40 was higher only in lesional PSO skin. Integrated single-cell RNA-seq data revealed identical cellular sources of these cytokines in AD, PSO and PN. Based on microdialysate, proteomic data of lesional PSO and PN skin, but not lesional AD skin, differed significantly from those of nonlesional skin. IL-8, IL-22, MCP-1 and IL-12p40 might be suitable markers for minimally invasive molecular profiling.