Project description:Two samples, 0hr and 72hr, were used to generate tachyzoite and bradyzoite transcriptional data from tissue-cultured Toxoplasma gondii strain Prugniaud, respectively.
Project description:There were three primary objectives to the overall experiment. I. Describe the transcriptome of the oocyst through its development beginning with the freshly excreted, unsporulated oocyst at “Day 0” to a fully sporulated and mature oocyst at “Day 10” and including a mid-sporulation timepoint at “Day 4”. II. Compare the transcriptomes of in vitro vs. in vivo derived bradyzoites. III. Compare expression data from three life stages (oocyst, bradyzoite and tachyzoite) from the same parasite isolate, M4, which has been been characterized as a Type II strain.
Project description:Background: Considerable work has been carried out to understand the biology of the intermediate stages, the tachyzoite and bradyzoite, of Toxoplasma gondii in large part due to the accessible culturing methods for these stages. However, culturing methods for stages beyond the bradyzoite, including the merozoite and sexual stages, have not been developed hindering the ability to study a large portion of the parasite’s life cycle. We begin to unravel the molecular aspects of the merozoite stage focusing on gene expression. Results: To initiate this, we harvested merozoite parasites and hybridized mRNA to the Affymetrix Toxoplasma GeneChip. We analyzed the merozoite data in context of the life cycle by combining it with a previously published study that generated array data for the oocyst, tachyzoite, and bradyzoite stages (Fritz HM et al. PLoS One, 2012). Principal component analysis highlights the unique profile of the merozoite samples, placing them approximately half-way on a continuum between the tachyzoite/bradyzoite and oocyst samples. Prior studies have shown that antibodies to surface antigen p30 (SAG1) and many dense granule proteins do not label merozoites, and our microarray data confirms that these genes are not expressed at this stage. Also, the expression for many rhoptry and microneme proteins is drastically reduced while the expression for many surface antigens is increased at the merozoite stage. Gene Ontology and KEGG analysis reveals that genes involved in transcription/translation and many metabolic pathways are upregulated at the merozoite stage, highlighting unique growth requirements of this stage. We also show that an upstream promoter region of a merozoite specific gene is sufficient to control stage specific expression at the merozoite stage. Conclusion: The merozoite represents the first developmental stage within the gut of the definitive host. Determining the correct conditions that coax the parasite into the merozoite stage in vitro may allow the parasite to complete sexual development. The data presented here describe the global gene expression profile of merozoite stage and the creation of transgenic parasite strains that will be useful in unlocking how the parasite senses and responds to the felid gut environment to initiate coccidian development. The ToxoGeneChip microarray was used to measure both tachyzoite and merozoite mRNA expression in the type II TgNmBr1 strain.
Project description:This SuperSeries is composed of the following subset Series: GSE11437: Expression QTL mapping of Toxoplasma gondii genes, Bradyzoite array GSE11514: Expression QTL mapping of Toxoplasma gondii genes, Tachyzoite array Keywords: SuperSeries Refer to individual Series
Project description:To investigate the transcriptional effects of TgAP2XII-5 on type II Toxoplasma gondii (ME49) in the tachyzoite and bradyzoite stages. Also, to study the transcriptional role of TgAIP1 on ME49 tachyzoites.
Project description:Two samples, 0hr and 72hr, were used to generate tachyzoite and bradyzoite transcriptional data from tissue-cultured Toxoplasma gondii strain Prugniaud, respectively. Samples are single replicates, and a subset of a larger timeseries. Non-control sample was exposed to alkaline conditions, media pH 8.2, for 72hr.
Project description:Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.
Project description:Background: Considerable work has been carried out to understand the biology of the intermediate stages, the tachyzoite and bradyzoite, of Toxoplasma gondii in large part due to the accessible culturing methods for these stages. However, culturing methods for stages beyond the bradyzoite, including the merozoite and sexual stages, have not been developed hindering the ability to study a large portion of the parasite’s life cycle. We begin to unravel the molecular aspects of the merozoite stage focusing on gene expression. Results: To initiate this, we harvested merozoite parasites and hybridized mRNA to the Affymetrix Toxoplasma GeneChip. We analyzed the merozoite data in context of the life cycle by combining it with a previously published study that generated array data for the oocyst, tachyzoite, and bradyzoite stages (Fritz HM et al. PLoS One, 2012). Principal component analysis highlights the unique profile of the merozoite samples, placing them approximately half-way on a continuum between the tachyzoite/bradyzoite and oocyst samples. Prior studies have shown that antibodies to surface antigen p30 (SAG1) and many dense granule proteins do not label merozoites, and our microarray data confirms that these genes are not expressed at this stage. Also, the expression for many rhoptry and microneme proteins is drastically reduced while the expression for many surface antigens is increased at the merozoite stage. Gene Ontology and KEGG analysis reveals that genes involved in transcription/translation and many metabolic pathways are upregulated at the merozoite stage, highlighting unique growth requirements of this stage. We also show that an upstream promoter region of a merozoite specific gene is sufficient to control stage specific expression at the merozoite stage. Conclusion: The merozoite represents the first developmental stage within the gut of the definitive host. Determining the correct conditions that coax the parasite into the merozoite stage in vitro may allow the parasite to complete sexual development. The data presented here describe the global gene expression profile of merozoite stage and the creation of transgenic parasite strains that will be useful in unlocking how the parasite senses and responds to the felid gut environment to initiate coccidian development.
Project description:There were three primary objectives to the overall experiment. I. Describe the transcriptome of the oocyst through its development beginning with the freshly excreted, unsporulated oocyst at “Day 0” to a fully sporulated and mature oocyst at “Day 10” and including a mid-sporulation timepoint at “Day 4”. II. Compare the transcriptomes of in vitro vs. in vivo derived bradyzoites. III. Compare expression data from three life stages (oocyst, bradyzoite and tachyzoite) from the same parasite isolate, M4, which has been been characterized as a Type II strain. Each array represents seperately isolated and processed RNA samples. (Two samples per time point/developmental stage) RNA samples were obtained from: 1. Oocysts harvested from kitten feces and purified for RNA extraction at Day 0, (not sporulated), Day 4 post-induction of sporulation (mid-sporulation) and Day 10 post-induction of sporulation (fully sporulated). Oocysts were collected and combined from two kittens that were infected with the same starting material (mouse brains containing bradyzoite cysts of the same parasite strain). Duplicate samples were obtained from feces collected and purified on separate days. 2. Bradyzoite cysts harvested from the brains of mice that were infected with oocysts from the same strain (obtained from the oocysts harvested from kittens as described for the oocyst RNA). Mice were treated with 0.44 µg/ml sulfadiazine in their water days 11-21 pi. Mice were sacrificed on day 21 for cyst purification. 3. In vitro 4 and 8 dpi bradyzoite and 2 dpi tachyzoite samples are from separately infected cultures of human foreskin fibroblasts (HFFs) (replicates were infected on the same day). The parasites used for the initial infections were derived from the same culture. Samples were harvested independently and kept separate for all the subsequent processing and labeling steps.