Project description:RATIONALE: Radiation therapy uses high-energy x-rays to damage cancer cells. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells.
PURPOSE: Phase II trial to study the effectiveness of bone marrow transplantation in treating patients who have hematologic cancer.
Project description:RNA-seq of CD11bhiLy6ChiLy6Glo bone marrow cells and CD11bmidLy6CmidLy6Glo bone marrow cells against CD11bloLy6CloLy6Glo bone marrow cells
Project description:microRNA miR-144/451 is highly expressed during erythropoiesis. We deleted the miR-144/451 gene locus in mice and compared the transcriptomes of miR-144/451-null bone marrow erythroid precursors to stage-matched wild-type control cells. Ter119+/CD71+/FSC-high bone marrow erythroblasts were sorted directly into Trizol LS reagent. Total RNAs extracted from three miR-144/451 knock-out and three wide type mice were analyzed using Affymetrix Mouse Genome 430 2.0 Arrays.
Project description:Acute myeloid leukemia (AML) cells release abundant exosomal miR-7977 that transfer into bone marrow (BM) mesenchymal stromal cells (MSCs). We have shown that exosomal miR-7977 was highly released from AML cells and was transferred into BM MSCs. It has been well known that a microRNA has multiple targets. In fact, miRDB predicted 633 targets. Based on these findings, control and miR-7977mimic were transferred into BM MSCs. Subsequently, alteration of transcriptome was analyzed to gain insight into the role of miR-7977 in bone marrow micro environment.
Project description:microRNA miR-144/451 is highly expressed during erythropoiesis. We deleted the miR-144/451 gene locus in mice and compared the transcriptomes of miR-144/451-null bone marrow erythroid precursors to stage-matched wild-type control cells.
Project description:This phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient’s immune system from rejecting the donor’s bone marrow stem cells. The donated stem cells may replace the patient’s immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body’s normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening