Project description:Doxycycline treatment affects gene expression in Wolbachia and Brugia malayi adult female worms in vivo Two biological replicates of female RNA used for hybridization, in duplicate, to examine the gene expression changes in Wolbachia and Brugia
Project description:Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. A total of 178 novel microRNA were identified from short read transcriptional data, which when combined with known Brugia microRNAs yielded a total of 284 microRNA. Of these, 123 microRNA sequences (43%) are differentially expressed over the mammalian life stages of B. malayi that we examined. Putative targets of these microRNA were identified from inversely expressed target clusters that contain valid seed sequences for the corresponding microRNAs. The largest identified cluster is downregulated in adult females and enriched in zinc finger domains, helicase domains, and DNA binding domains suggesting this microRNA cluster may have regulatory control over a large proportion of adult female specific mRNA genes. MicroRNA-like molecules are identified as produced by the Wolbachia endosymbiont, providing evidence for direct nucleic acid-based interdomain communication between filarial nematodes and their bacterial obligate endosymbiont.
Project description:Transcriptional profiling of adult males and females of the lymphatic dwelling filarial parasite Brugia malayi Keywords: Gender based transcripts, filaria
Project description:Transcriptional profiling of adult males and females of the lymphatic dwelling filarial parasite Brugia malayi Keywords: Gender based transcripts, filaria Three biological replicates of male and female RNA used for hybridization to examine the gender-specifc transcripts
Project description:A proteomics strategy was used to identify putative GPI-APs from adult B. malayi. Three different sample types were prepared for analysis. Firstly, intact adult worms were treated with PI-PLC to enzymatically release and solubilize the protein away from the lipid moiety. A mock-treatment with no PI-PLC was performed as a negative control. The samples derived from treatment of the intact worms have been named “Surface” but it should be noted that the proteins could originate from any exposed surface like the mouth, vagina, or rectum of the worm. Secondly, a membrane fraction of B. malayi adult female worms was prepared by ultracentrifugation of a total lysate in a sucrose buffer to separate membrane proteins from soluble proteins. This membrane fraction was also treated with PI-PLC or mock-treated without PI-PLC as a negative control. Lastly, a GPI-AP enriched sample was prepared by performing a series of organic solvent partitions to extract GPI-APs from a membrane fraction. This sample was not treated with PI-PLC. Proteins in all three samples types were digested with trypsin and the resulting peptides analyzed by LC-MS/MS.
Project description:The filarial nematodes Brugia malayi, Wuchereria bancrofti and Onchocerca volvulus cause elephantiasis, dermatitis and blindness, resulting in severe morbidity in developing countries. 1.3 billion people are at risk of infection. Targeting the essential Wolbachia endobacteria of filarial nematodes with doxycycline has proven to be an effective therapy, resulting in a block in embryogenesis and worm development, and macrofilaricidal effects. However, doxycycline is contraindicated for a large portion of the at-risk population. To identify new targets for anti-wolbachial therapy, understanding the molecular basis of the Wolbachia-filaria symbiosis is required. We performed cross-species hybridization by using the Brugia malayi microarray to identify differentially expressed genes in the rodent filaria Litomosoides sigmodontis after depletion of Wolbachia which therefore might have a role in symbiosis. Female adult Litomosoides sigmodontis from patent infections were treated with tetracycline to deplete endosymbiotic Wolbachia bacteria. RNA from tetracycline-treated Litomosoides sigmodontis was compared to untreated age-matched control worms. This experiment was performed for three different timepoints: day 6, 15 and 36 of tetracycline treatment. One biological replicate was performed each with two technical replicates (dye-flip replicates).
Project description:N-linked glycosylation is a critical post translational modification of eukaryotic proteins. N-linked glycans are present on surface and secreted filarial proteins that play a role in host parasite interactions. Examples of glycosylated Brugia malayi proteins have been previously identified but there has not been a systematic study of the N-linked glycoproteome of this or any other filarial parasite. In this study, we applied an enhanced N-glyco FASP protocol using an engineered carbohydrate-binding protein, Fbs1, to enrich N-glycosylated peptides for analysis by LC-MS/MS. We then mapped the N-glycosites on proteins from three host stages of the parasite: adult female, adult male and microfilariae. Fbs1 enrichment of N-glycosylated peptides enhanced the identification of N-glycosites. Our data identified 582 N-linked glycoproteins with 1273 N-glycosites. Gene ontology and cell localization prediction of the identified N-glycoproteins indicated that they were mostly membrane and extracellular proteins. Comparing results from adult female worms, adult male worms, and microfilariae, we find variability in N-glycosylation at the protein level as well as at the individual N-glycosite level. These variations are highlighted in cuticle N-glycoproteins and adult worm restricted N-glycoproteins as examples of proteins at the host parasite interface that are well positioned as potential therapeutic targets or biomarkers.
Project description:Female worms (Brugia malayi) were collected from infected jirds treated with 2.5 mg/ml tetracycline in drinking water for 7, 14, or 21 days to eliminate the worm's endosymbiont, Wolbachia.<br>Control age matched female worms were recovered from infected jirds given normal water for drinking.<br>The Filarial Nematode Oligonucleotide Array (version 2) was used in hybridization analyses on cDNA generated from extracted total RNA.<br>Each microarray was hybridized with a mixture of control and experimental cDNA differentially labeled with Cy3 and Cy5 in a flip-dye experiment.<br>Gridding and analysis of images were performed using ScanArray v3.0, each spot defined pixel-by-pixel using a modified Mann-Whitney test, and the resulting values processed with Gene-Spring 7.1 software.