Project description:This SuperSeries is composed of the following subset Series: GSE35457: Transcriptome profiles of mouse and human monocyte and dendritic cell subsets (human data) GSE35458: Transcriptome profiles of mouse and human monocyte and dendritic cell subsets (mouse data) Refer to individual Series
Project description:Dendritic cells (DCs) are critical in mediating immunity to pathogens, vaccines, tumors and tolerance to self. Significant progress has been made in the study of DC subsets in murine models but the translation of these findings to human DC immunobiology has not been fully realized. Murine splenic CD8+ DC and CD103+ DC possess potent antigen cross-presenting capacity. Although recent evidence points to human blood CD141+ DCs as the functional equivalent of CD8+ DC, the precise identity of the human migratory cross-presenting DC has remained elusive. We performed phenotypic and functional analyses to interrogate the DC compartment of human non-lymphoid tissues and identified three distinct subsets: i) CD141high DCs, ii) CD1c DCs and iii) CD14+ DCs. Only CD141high DCs were capable of cross-presenting soluble antigen. Comparative transcriptome analysis of steady state monocyte and DC subsets between mouse and human confirmed conservation between species, aligning the following subsets together: i) human CD141high DCs with mouse CD8+ and CD103+ DCs, ii) human CD1c+ DCs with mouse CD4+ DCs and iii) human CD14+ DC with mouse monocyte subsets. The lack of positive association between human CD1c+ DCs and mouse non-lymphoid tissue CD11b+ DCs highlights heterogeneity and predicts the existence of a monocyte-like cell within the CD11b+ DCs. Gene expression analysis using total RNA from specific human and mouse monocyte and dendritic cell subsets purified by FACS.
Project description:Dendritic cells (DCs) are critical in mediating immunity to pathogens, vaccines, tumors and tolerance to self. Significant progress has been made in the study of DC subsets in murine models but the translation of these findings to human DC immunobiology has not been fully realized. Murine splenic CD8+ DC and CD103+ DC possess potent antigen cross-presenting capacity. Although recent evidence points to human blood CD141+ DCs as the functional equivalent of CD8+ DC, the precise identity of the human migratory cross-presenting DC has remained elusive. We performed phenotypic and functional analyses to interrogate the DC compartment of human non-lymphoid tissues and identified three distinct subsets: i) CD141high DCs, ii) CD1c DCs and iii) CD14+ DCs. Only CD141high DCs were capable of cross-presenting soluble antigen. Comparative transcriptome analysis of steady state monocyte and DC subsets between mouse and human confirmed conservation between species, aligning the following subsets together: i) human CD141high DCs with mouse CD8+ and CD103+ DCs, ii) human CD1c+ DCs with mouse CD4+ DCs and iii) human CD14+ DC with mouse monocyte subsets. The lack of positive association between human CD1c+ DCs and mouse non-lymphoid tissue CD11b+ DCs highlights heterogeneity and predicts the existence of a monocyte-like cell within the CD11b+ DCs. Gene expression analysis using total RNA from specific human and mouse monocyte and dendritic cell subsets purified by FACS.
Project description:Dendritic cells (DCs) are critical in mediating immunity to pathogens, vaccines, tumors and tolerance to self. Significant progress has been made in the study of DC subsets in murine models but the translation of these findings to human DC immunobiology has not been fully realized. Murine splenic CD8+ DC and CD103+ DC possess potent antigen cross-presenting capacity. Although recent evidence points to human blood CD141+ DCs as the functional equivalent of CD8+ DC, the precise identity of the human migratory cross-presenting DC has remained elusive. We performed phenotypic and functional analyses to interrogate the DC compartment of human non-lymphoid tissues and identified three distinct subsets: i) CD141high DCs, ii) CD1c DCs and iii) CD14+ DCs. Only CD141high DCs were capable of cross-presenting soluble antigen. Comparative transcriptome analysis of steady state monocyte and DC subsets between mouse and human confirmed conservation between species, aligning the following subsets together: i) human CD141high DCs with mouse CD8+ and CD103+ DCs, ii) human CD1c+ DCs with mouse CD4+ DCs and iii) human CD14+ DC with mouse monocyte subsets. The lack of positive association between human CD1c+ DCs and mouse non-lymphoid tissue CD11b+ DCs highlights heterogeneity and predicts the existence of a monocyte-like cell within the CD11b+ DCs.
Project description:Dendritic cells (DCs) are critical in mediating immunity to pathogens, vaccines, tumors and tolerance to self. Significant progress has been made in the study of DC subsets in murine models but the translation of these findings to human DC immunobiology has not been fully realized. Murine splenic CD8+ DC and CD103+ DC possess potent antigen cross-presenting capacity. Although recent evidence points to human blood CD141+ DCs as the functional equivalent of CD8+ DC, the precise identity of the human migratory cross-presenting DC has remained elusive. We performed phenotypic and functional analyses to interrogate the DC compartment of human non-lymphoid tissues and identified three distinct subsets: i) CD141high DCs, ii) CD1c DCs and iii) CD14+ DCs. Only CD141high DCs were capable of cross-presenting soluble antigen. Comparative transcriptome analysis of steady state monocyte and DC subsets between mouse and human confirmed conservation between species, aligning the following subsets together: i) human CD141high DCs with mouse CD8+ and CD103+ DCs, ii) human CD1c+ DCs with mouse CD4+ DCs and iii) human CD14+ DC with mouse monocyte subsets. The lack of positive association between human CD1c+ DCs and mouse non-lymphoid tissue CD11b+ DCs highlights heterogeneity and predicts the existence of a monocyte-like cell within the CD11b+ DCs.
Project description:Pulmonary dendritic cells are heterogenous cells comprise four distinct subsets including two conventional dendritic cell subsets, CD103+ and CD11bhiCD14lo cells, and two monocyte-derived dendritic cell subsets. Their functions in terms of migration and T cell activation are distinct, but genes regulating their features are to be determined. We used microarrays to identify a select set of genes that are expressed in conventinal dendritic cells and in monocyte-derived dendriti cells. Four distinct lung DC subsets were purified by flow cytometry-based sorting after inhalation of lipopolusaccharide and ovalbumin. Each subset has three replicates.
Project description:Pulmonary dendritic cells are heterogenous cells comprise four distinct subsets including two conventional dendritic cell subsets, CD103+ and CD11bhiCD14lo cells, and two monocyte-derived dendritic cell subsets. Their functions in terms of migration and T cell activation are distinct, but genes regulating their features are to be determined. We used microarrays to identify a select set of genes that are expressed in conventinal dendritic cells and in monocyte-derived dendriti cells.
Project description:Human and mouse blood each contain two monocyte subsets. Here, we investigated the extent of their similarity using a microarray approach. Approximately 300 genes in human and 550 genes in mouse were differentially expressed between subsets. More than 130 of these gene expression differences were conserved between mouse and human monocyte subsets. We confirmed numerous differences at the cell surface protein level. Despite overall conservation, some molecules were conversely expressed between the two species’ subsets, including CD36, CD9, and TREM-1. Furthermore, other differences existed, including a prominent PPARγ signature in mouse monocytes absent in human. Overall, human and mouse monocyte subsets are far more broadly conserved than currently recognized. Thus, studies in mice may indeed yield relevant information regarding the biology of human monocyte subsets. However, differences between the species deserve consideration in models of human disease studied in the mouse.
Project description:We exploited label-free quantitative mass spectrometry to compare primary human blood Dendritic cells (DCs) subsets protein expression to identify new markers. Subsets distinguished are: Plasmacytoid DCs (pDC) and BDCA3+ and CD1c+ myeloid DCs and CD16+ monocytes. The dendritic cells were analyzed by LC-MS/MS and processed by MaxQuant for identification and LFQ quantification.
Project description:Human and mouse blood each contain two monocyte subsets. Here, we investigated the extent of their similarity using a microarray approach. Approximately 300 genes in human and 550 genes in mouse were differentially expressed between subsets. More than 130 of these gene expression differences were conserved between mouse and human monocyte subsets. We confirmed numerous differences at the cell surface protein level. Despite overall conservation, some molecules were conversely expressed between the two species’ subsets, including CD36, CD9, and TREM-1. Furthermore, other differences existed, including a prominent PPARγ signature in mouse monocytes absent in human. Overall, human and mouse monocyte subsets are far more broadly conserved than currently recognized. Thus, studies in mice may indeed yield relevant information regarding the biology of human monocyte subsets. However, differences between the species deserve consideration in models of human disease studied in the mouse. The two major subsets of monocytes (Ly-6C+ and Ly-6Clo) from 12-week old C57Bl/6 mice were sorted and the RNA extracted and hybridized to Affymetrix GeneChip® 430 2.0 arrays. We pooled leukocytes from 5 mice for each sort and sorted 4 separate times for 4 biological replicates. The two major monocyte subsets (CD16- and CD16+) were isolated from venous heparinized blood from apparently healthy human volunteers using MACS technology with all reagents and tools from Miltenyi Biotec. Three separate donors were hybridized three different times to Affymetrix U133 Plus 2.0 array.