Project description:The goal of this study is to determine the effects of adipose-specific Glut4 overexpression or knockout on changes in adipose tissue global gene expression Three mice from each of four genotypes were studied using a total of 12 microarray chips: aP2-Cre transgenic mice (controls for adipose-Glut4-/- mice), adipose-Glut4-/- mice; FVB mice (littermate controls for adipose-GLUT4-Tg mice) and adipose-GLUT4-Tg mice with Glut4 transgenically overexpressed under the control of the aP2 promoter. Total RNA from perigonadal adipose tissue was extracted using the RNeasy Mini Kit from Qiagen. Affymetrix gene chip hybridization and analysis were performed at the Genomics Core Facility of the Beth Israel Deaconess Medical Center.
Project description:The goal of this study is to determine the effects of adipose-specific Glut4 overexpression or knockout on changes in adipose tissue global gene expression
Project description:Insulin action in adipocytes affects whole-body insulin sensitivity. Studies of adipose-specific Glut4 knockout mice have established that adipose Glut4 contributes to the control of systemic glucose homeostasis. Presumably, this reflects a role for Glut4-mediated glucose transport in the regulation of secreted adipokines. In cultured 3T3-L1 adipocytes, Rab10 GTPase is required for insulin-stimulated translocation of Glut4 (Sano et al., 2007). The physiological importance of adipose Rab10 and the significance of its role in the control of Glut4 vesicle trafficking in vivo are unknown. Here we report that adipocytes from adipose-specific Rab10 knockout mice have a ~50% reduction in glucose uptake and Glut4 translocation to the cell surface in response to insulin, demonstrating a role for Rab10 in Glut4 trafficking. Moreover, hyperinsulinemic-euglycemic clamp shows decreased whole-body glucose uptake as well as impaired suppression of hepatic glucose production in adipose Rab10 knockout mice. Thus, fully functional Glut4 vesicle trafficking in adipocytes is critical for maintaining insulin sensitivity. Comparative transcriptome analysis of perigonadal adipose tissue demonstrates significant transcriptional similarities between adipose Rab10 knockout mice and adipose Glut4 knockout mice, consistent with the notion that the phenotypic similarities between the two models are mediated by reduced insulin-stimulated glucose transport into adipocytes. Transcriptome sequencing of perigonadal white adipose tissue
Project description:Insulin action in adipocytes affects whole-body insulin sensitivity. Studies of adipose-specific Glut4 knockout mice have established that adipose Glut4 contributes to the control of systemic glucose homeostasis. Presumably, this reflects a role for Glut4-mediated glucose transport in the regulation of secreted adipokines. In cultured 3T3-L1 adipocytes, Rab10 GTPase is required for insulin-stimulated translocation of Glut4 (Sano et al., 2007). The physiological importance of adipose Rab10 and the significance of its role in the control of Glut4 vesicle trafficking in vivo are unknown. Here we report that adipocytes from adipose-specific Rab10 knockout mice have a ~50% reduction in glucose uptake and Glut4 translocation to the cell surface in response to insulin, demonstrating a role for Rab10 in Glut4 trafficking. Moreover, hyperinsulinemic-euglycemic clamp shows decreased whole-body glucose uptake as well as impaired suppression of hepatic glucose production in adipose Rab10 knockout mice. Thus, fully functional Glut4 vesicle trafficking in adipocytes is critical for maintaining insulin sensitivity. Comparative transcriptome analysis of perigonadal adipose tissue demonstrates significant transcriptional similarities between adipose Rab10 knockout mice and adipose Glut4 knockout mice, consistent with the notion that the phenotypic similarities between the two models are mediated by reduced insulin-stimulated glucose transport into adipocytes.
Project description:To describe the protein profile in hippocampus, colon and ileum tissue’ changing after the old faeces transplants, we adopted a quantitative label free proteomics approach.