Project description:This SuperSeries is composed of the following subset Series: GSE30380: Expression profile of hemin induced erythroid differentiation, over-expressing and knocking-down GATA-1, EKLF and NF-E2 in K562s GSE30808: ChIP-chip from 48h hemin induced K562 cells with GATA-1, EKLF, and NF-E2 antibodies Refer to individual Series
Project description:we profiled miRNA gene expression with the Illumina hybridization system in K562 cells induced by hemin and K562 cells with over-expressing or knocking-down GATA-1, EKLF or NF-E2 treatments. To find differential expression miRNAs, we profiled miRNA gene expression with the Illumina hybridization system in untreated, hemin-treated 48h and 72h K562 cells. To define GATA-1, EKLF or NF-E2 directly targeted miRNA genes, a comprehensive analysis of TF induced miRNA gene expression changes was performed using over-expressing or knocking-down TFs in K562 cells and illumina miRNA profiling Beadchip system.
Project description:we profiled miRNA gene expression with the Illumina hybridization system in K562 cells induced by hemin and K562 cells with over-expressing or knocking-down GATA-1, EKLF or NF-E2 treatments.
Project description:The transcription factor GATA-1, EKLF and NF-E2 promotes erythroid differentition by regulating their target genes, however, the intricate interplays between these key TFs and microRNA genes are largely unknown. Chromatin immunoprecipitation (ChIP) of GATA-1, EKLF and NF-E2 together with microRNA genomic promoter profiling by ChIP-on-chip analysis demonstrated that GATA-1, EKLF and NF-E2 collaborately regulate a series of microRNA genes. Comparison of microRNA promoter arrays of GATA-1 VS EKLF VS NF-E2 in K562 cells suffering with hemin induced erythroid differentiation
Project description:The transcription factor GATA-1, EKLF and NF-E2 promotes erythroid differentition by regulating their target genes, however, the intricate interplays between these key TFs and microRNA genes are largely unknown. Chromatin immunoprecipitation (ChIP) of GATA-1, EKLF and NF-E2 together with microRNA genomic promoter profiling by ChIP-on-chip analysis demonstrated that GATA-1, EKLF and NF-E2 collaborately regulate a series of microRNA genes.
Project description:Erythropoiesis is dependent on the activity of transcription factors, including the erythroid-specific erythroid Kruppel-like factor (EKLF). ChIP followed by massively parallel sequencing (ChIP-Seq) is a powerful, unbiased method to map transfactor occupancy. We used ChIP-Seq to study the interactome of EKLF in mouse erythroid progenitor cells and more differentiated erythroblasts. We correlated these results with the nuclear distribution of EKLF, RNA-Seq analysis of the transcriptome, and the occupancy of other erythroid transcription factors. In progenitor cells, EKLF is found predominantly at the periphery of the nucleus, where EKLF primarily occupies the promoter regions of genes and acts as a transcriptional activator. In erythroblasts, EKLF is distributed throughout the nucleus, and erythroblast-specific EKLF occupancy is predominantly in intragenic regions. In progenitor cells, EKLF modulates general cell growth and cell cycle regulatory pathways, whereas in erythroblasts EKLF is associated with repression of these pathways. The EKLF interactome shows very little overlap with the interactomes of GATA1, GATA2, or TAL1, leading to a model in which EKLF directs programs that are independent of those regulated by the GATA factors or TAL1. (Blood.2011;118(17):e139-e148) We used ChIP-Seq to study the interactome of EKLF in mouse erythroid progenitor cells and more differentiated erythroblasts and RNA-Seq analysis of the transcriptome.
Project description:The molecular mechanisms underlying erythroid-specific gene regulation remain incompletely understood. Closely spaced binding sites for GATA, NF-E2/maf and CACCC interacting transcription factors play functionally important roles in globin and other erythroid-specific gene expression. We and others recently identified the CACCC-binding transcription factor ZBP-89 as a novel GATA-1 and NF-E2/mafK interacting partner. Here, we examined the role of ZBP-89 in human globin gene regulation and erythroid maturation using a primary CD34+ cell ex vivo differentiation system. We show that ZBP-89 protein levels rise dramatically during human erythroid differentiation, and that ZBP-89 occupies key cis-regulatory elements within the globin and other erythroid gene loci. ZBP-89 binding correlates strongly with RNA Pol II occupancy, active histone marks, and high-level gene expression. ZBP-89 physically associates with the histone acetyltransferases (HATs) p300 and Gcn5/Trrap, and occupies common sites with Gcn5 within the human globin loci. Lentiviral shRNA knockdown of ZBP-89 results in reduced Gcn5 occupancy, decreased acetylated histone 3 levels, lower globin and erythroid-specific gene expression, and impaired erythroid maturation. Addition of the HDAC inhibitor valproic acid partially reverses the reduced globin gene expression. These findings reveal an activating role for ZBP-89 in human globin gene regulation and erythroid differentiation. Keywords: Human primary erythroid progenitors Expression data of human erythroid progenitors transduced with lentivirus expressing short hairpins against ZBP-89 and control empty vector
Project description:Erythropoiesis is dependent on the activity of transcription factors, including the erythroid-specific erythroid Kruppel-like factor (EKLF). ChIP followed by massively parallel sequencing (ChIP-Seq) is a powerful, unbiased method to map transfactor occupancy. We used ChIP-Seq to study the interactome of EKLF in mouse erythroid progenitor cells and more differentiated erythroblasts. We correlated these results with the nuclear distribution of EKLF, RNA-Seq analysis of the transcriptome, and the occupancy of other erythroid transcription factors. In progenitor cells, EKLF is found predominantly at the periphery of the nucleus, where EKLF primarily occupies the promoter regions of genes and acts as a transcriptional activator. In erythroblasts, EKLF is distributed throughout the nucleus, and erythroblast-specific EKLF occupancy is predominantly in intragenic regions. In progenitor cells, EKLF modulates general cell growth and cell cycle regulatory pathways, whereas in erythroblasts EKLF is associated with repression of these pathways. The EKLF interactome shows very little overlap with the interactomes of GATA1, GATA2, or TAL1, leading to a model in which EKLF directs programs that are independent of those regulated by the GATA factors or TAL1. (Blood.2011;118(17):e139-e148)
Project description:The ensemble of Foxo3-regulated genes in the erythroid G1E-ER-GATA-1 cell line was determined by knocking down Foxo3 using siRNA, and measuring genome wide transcription by microarray analysis