Project description:This SuperSeries is composed of the following subset Series: GSE35902: Cardiac over-expression of Med13 GSE35903: Cardiac over-expression of Med13, non-cardiac tissue analysis Med13 cardiac transgenic mice were back-crossed 4 or more generations to C57Bl6 mice. Refer to individual Series
Project description:Med13 cardiac over-expression regulates cardiac gene expression and metabolism Hearts from Med13 alphaMHC transgenic mice and wild type littermates
Project description:Med13 cardiac over-expression regulates obesity. Liver, WAT and BAT from alphaMHC-Med13 TG mice was analyzed Liver, WAT and BAT from Med13 alphaMHC transgenic mice and wild type littermates
Project description:The heart requires a continuous supply of energy but has little capacity for energy storage and thus relies on exogenous metabolic sources. We previously showed that cardiac MED13 modulates systemic energy homeostasis in mice. Here we sought to define the extra-cardiac tissue(s) that respond to cardiac MED13 signaling. We show that cardiac over-expression of MED13 in transgenic (MED13cTg) mice confers a lean phenotype that is associated with increased lipid uptake, beta-oxidation and mitochondrial content in white adipose tissue (WAT) and liver. Cardiac expression of MED13 decreases metabolic gene expression and metabolite levels in heart and liver but enhances them in WAT. Although exhibiting increased energy expenditure in the fed state, MED13cTg mice metabolically adapt to fasting. Furthermore, MED13cTg hearts oxidize fuel that is readily available, rendering them more efficient in the fed state. Parabiosis experiments in which circulations of wild-type and MED13cTg mice are joined, reveal that circulating factor(s) in MED13cTg mice promote enhanced metabolism and leanness. These findings demonstrate that MED13 acts within the heart to promote systemic energy expenditure in extra-cardiac energy depots and point to an unexplored metabolic communication system between the heart and other tissues.
Project description:To describe the protein profile in hippocampus, colon and ileum tissue’ changing after the old faeces transplants, we adopted a quantitative label free proteomics approach.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.