Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, Lin28 was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28A preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells. Examination of RNA binding of LIN28A and translation in mouse embryonic stem cell.
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, LIN28A was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28 preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells. Examination of mRNA level in embryonic stem cell treated with siRNA for GFP or for Lin28a
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, LIN28A was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28 preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells. Examination of miRNA level in embryonic stem cell treated with siRNA for GFP or for Lin28a
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, LIN28A was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28 preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells.
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, LIN28A was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28 preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells.
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, Lin28 was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28A preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells.
Project description:Lin28, a well-known RNA-binding protein, regulates diverse cellular properties. All physiological functions of Lin28A characterized so far have been attributed to its repression of let-7 miRNA biogenesis or modulation of the mRNA translational efficiency. Here we show that Lin28A directly binds to a consensus DNA sequence in vitro and in mouse embryonic stem cells in vivo. ChIP-seq and RNA-seq reveal the enrichment of Lin28A binding around transcription start sites, and a positive correlation between its genomic occupancy and expression of many associated genes. Mechanistically, Lin28A recruits 5-methylcytosine-dioxygenase Tet1 to genomic binding sites to orchestrate 5-methylcytosine and 5-hydroxymethylcytosine dynamics. Either Lin28A or Tet1 knockdown leads to dysregulated DNA methylation and expression of common target genes. These results reveal a surprising role for Lin28A in transcriptional regulation via epigenetic DNA modifications and provide a new framework for understanding mechanisms underlying versatile functions of Lin28A in mammalian systems. Examine the DNA binding ability of Lin28 and its roles in regulating gene expression by coordinating with Tet1
Project description:A single protein can be multifaceted depending on the cellular contexts and interacting molecules. LIN28A is an RNA-binding protein that governs developmental timing, cellular proliferation, differentiation, stem cell pluripotency, and metabolism. In addition to its best-known roles in microRNA biogenesis, diverse molecular roles have been recognized. In the nervous system, LIN28A is known to play critical roles in proliferation and differentiation of neural progenitor cells (NPC). We profiled the endogenous LIN28A-interacting proteins in NPC differentiated from human induced pluripotent stem (iPS) cells using immunoprecipitation and liquid chromatography-tandem mass spectrometry. We identified over 500 LIN28A-interacting proteins, including 156 RNA-independent interactors. Functions of these proteins span a wide range of gene regulatory processes. Our analysis opens multiple avenues for elaborating molecular roles and characteristics of LIN28A.
Project description:Lin28, a well-known RNA-binding protein, regulates diverse cellular properties. All physiological functions of Lin28A characterized so far have been attributed to its repression of let-7 miRNA biogenesis or modulation of the mRNA translational efficiency. Here we show that Lin28A directly binds to a consensus DNA sequence in vitro and in mouse embryonic stem cells in vivo. ChIP-seq and RNA-seq reveal the enrichment of Lin28A binding around transcription start sites, and a positive correlation between its genomic occupancy and expression of many associated genes. Mechanistically, Lin28A recruits 5-methylcytosine-dioxygenase Tet1 to genomic binding sites to orchestrate 5-methylcytosine and 5-hydroxymethylcytosine dynamics. Either Lin28A or Tet1 knockdown leads to dysregulated DNA methylation and expression of common target genes. These results reveal a surprising role for Lin28A in transcriptional regulation via epigenetic DNA modifications and provide a new framework for understanding mechanisms underlying versatile functions of Lin28A in mammalian systems.