Project description:B cell chronic lymphocytic leukemia - A model with immune response
Seema Nanda 1, , Lisette dePillis 2, and Ami Radunskaya 3,
1.
Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore 560065, India
2.
Department of Mathematics, Harvey Mudd College, Claremont, CA 91711
3.
Department of Mathematics, Pomona College, Claremont, CA, 91711, United States
Abstract
B cell chronic lymphocytic leukemia (B-CLL) is known to have substantial clinical heterogeneity. There is no cure, but treatments allow for disease management. However, the wide range of clinical courses experienced by B-CLL patients makes prognosis and hence treatment a significant challenge. In an attempt to study disease progression across different patients via a unified yet flexible approach, we present a mathematical model of B-CLL with immune response, that can capture both rapid and slow disease progression. This model includes four different cell populations in the peripheral blood of humans: B-CLL cells, NK cells, cytotoxic T cells and helper T cells. We analyze existing data in the medical literature, determine ranges of values for parameters of the model, and compare our model outcomes to clinical patient data. The goal of this work is to provide a tool that may shed light on factors affecting the course of disease progression in patients. This modeling tool can serve as a foundation upon which future treatments can be based.
Keywords: NK cell, chronic lymphocytic leukemia, mathematical model, T cell., B-CLL.
Project description:We investigated at two time points a longitudinal cohort of 27 untreated Chronic Lymphocytic Leukemia (CLL) patients with either stable or progressive disease. The sequenced genes included BCOR, EGR2, HIST1H1E, ITPKB, KRAS, MED12, NRAS, RIPK1, SAMHD1, ATM, BIRC3, BRAF, CHD2, DDX3X, DDX3Y, FBXW7, KIT, KLHL6, MAPK1, MYD88, NOTCH1, PIK3CA, POT1, SF3B1, TP53, XPO1 and ZMYM3, which were previously identified as mutated in CLL studies.
Project description:We studied the value of the microRNAs as a signature for Chronic lymphocytic leukemia (CLL) patients with specific chromosomal abnormalities. We found that MiR-181b is abiomarker of disease progression in Chronic Lymphocytic Leukemia
Project description:Comparison of Chronic Lymphocytic Leukemia patients expressing high or low levels of ZAP70 mRNA: prognostic factors and interaction with the microenvironment. Zeta-associated protein 70 (ZAP70) is a widely recognized prognostic factor in chronic lymphocytic leukemia (CLL), but mechanisms by which its higher expression leads to a poor outcome remain to be fully explained. In an attempt to unveil unfavorable cellular properties linked to high ZAP70 expression, we used gene expression profiling to identify genes associated with disparities in B-cells from CLL patients expressing high versus low ZAP70 mRNA, measured by quantitative real-time PCR. Keywords: comparison of poor and good prognosis CLL patient transcriptome regarding ZAP70 expression
Project description:Genomic profiles of CLL (Chronic Lymphocytic Leukemia) patients. 11 CLL patients were selected for detection of genomic aberrations, 8 patients with atypical CLL and 3 patients with typical CLL.
Project description:Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of malignant CD5+ B lymphocytes (CLL cells) in the peripheral blood, and their progressive infiltration in lymphoid organs. MMP-9 plays an important role in cell migration and survival, contributes to CLL pathogenesis by proteolytic and non-proteolytic mechanisms and may constitutive a therapeutic target. We used Affimetrix microarray technology to characterize the global gene expression profile of chronic lymphocytic leukemia (CLL) cells upon MMP-9 transfection. The aim was to establish whether MMP-9 regulates gene expression and to identify new therapeutic targets in CLL.
Project description:This study investigates genomic imbalance in chronic lymphocytic leukemia (CLL) and aims to identify genomic gains and losses with prognostic significance. Two-condition experiment, Test CLL specimens vs. Reference human genome DNA equimixture of normal male and normal female.