Project description:To further understand the pathologic microenvironment in IPF, we have employed whole genome microarray expression profiling as a discovery platform to identify genes with the potential to distinguish normal and IPF lung in normal-looking, fibrotic foci and hyperplastic areas of IPF lung. Four IPF lungs were dissected into normal-looking, fibrotic foci and hyperplastic areas by Laser-Capture-Microdissection. Gene expression analysis showed that 638 significantly different genes were identified that clearly distinguished the different IPF microenvironments . Among them, MMP19 was revealed as one of the most significantly up-regulated genes that distinguished normal looking epithelial cells (N) to hyperplastic epithelial cells, MMP19 up-regulation in IPF lungs was verified by immunohistochemical (IHC), qRT-PCR and Western-blot. IPF lungs are heterogeneity complex, which comprise normal looking area, fibrotic foci and hyperplastic area. In this study we separated the normal, fibrotic foci and hyperplastic area by LCM and employed Agilent whole genome gene expression microarray profiling to identify genes with the potential to distinguish the unique microenironment of IPF
Project description:To further understand the pathologic microenvironment in IPF, we have employed whole genome microarray expression profiling as a discovery platform to identify genes with the potential to distinguish normal and IPF lung in normal-looking, fibrotic foci and hyperplastic areas of IPF lung. Four IPF lungs were dissected into normal-looking, fibrotic foci and hyperplastic areas by Laser-Capture-Microdissection. Gene expression analysis showed that 638 significantly different genes were identified that clearly distinguished the different IPF microenvironments . Among them, MMP19 was revealed as one of the most significantly up-regulated genes that distinguished normal looking epithelial cells (N) to hyperplastic epithelial cells, MMP19 up-regulation in IPF lungs was verified by immunohistochemical (IHC), qRT-PCR and Western-blot.
Project description:A comprehensive understanding of the changes in gene expression in cell types involved in idiopathic pulmonary fibrosis (IPF) will shed light on the mechanisms underlying the loss of alveolar epithelial cells, and development of honeycomb cysts and fibroblastic foci. We sought to understand changes in IPF lung cell transcriptomes and gain insight into innate immune aspects of pathogenesis. We investigated IPF pathogenesis using single cell RNA-sequencing of fresh lung explants, comparing human IPF fibrotic lower lobes reflecting late disease, upper lobes reflecting early disease and normal lungs. IPF lower lobes showed increased fibroblasts, and basal, ciliated, goblet and club cells, but decreased alveolar epithelial cells, and marked alterations in inflammatory cells. We found three discrete macrophage subpopulations in normal and fibrotic lungs, one expressing monocyte markers, one highly expressing FABP4 and INHBA (FABP4hi), and one highly expressing SPP1 and MERTK (SPP1hi). SPP1hi macrophages in fibrotic lower lobes showed highly upregulated SPP1 and MERTK expression. Low-level local proliferation of SPP1hi macrophages in normal lungs was strikingly increased in IPF lungs. Co-localization and causal modeling supported the role for these highly proliferative SPP1hi macrophages in activation of IPF myofibroblasts in lung fibrosis. These data suggest SPP1hi macrophages contribute importantly to lung fibrosis in IPF, and that therapeutic strategies targeting MERTK and macrophage proliferation may show promise for treatment of this disease.
Project description:Lung tissues were collected from patients with IPF undergoing lung transplantation. Non-transplanted donor lung tissue showing no evidence of interstitial lung disease served as healthy controls. Septa from different regions of the lungs were mircodissected and their RNA was subjected to microarray-analysis. RNA from 10 heathy donor tissues was pooled and used as a pooled reference. From each of the 10 IPF patients, samples were collected once from “healthy looking” (non-fibrotic) regions and from fibrotic loci.
Project description:Idiopathic pulmonary fibrosis (IPF) is an untreatable fibrotic lung disease characterized by fibroblast proliferation and epithelial mesenchymal transition. The expression and role of microRNAs (miRNA) has not been studied in IPF. Using miRNA expression microarrays we identified 46 differentially expressed miRNA in IPF lungs which included let-7d and the miR-30 family. Keywords: miRNA expression Lung tissue samples for microarray analysis were obtained through the University of Pittsburgh Health Sciences Tissue Bank. Ten samples were obtained from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplant, and ten control normal lung tissues obtained from the disease free margins with normal histology of lung cancer resection specimens. The morphologic diagnosis of IPF was based on typical microscopic findings consistent with usual interstitial pneumonia. Total RNA was labeled with Cy3 and hybridized on Agilent 8X15K microRNA array (Agilent Technologies, Santa Clara, CA). After 20 hours hybridization, arrays were washed and scanned according to the manufacturerâs protocol.
Project description:Idiopathic pulmonary fibrosis (IPF) is an untreatable fibrotic lung disease characterized by fibroblast proliferation and epithelial mesenchymal transition. Using miRNA expression microarrays we identified 96 differentially expressed miRNA in IPF lungs which included let-7d, miR-30 family, miR-29 family and miR-154 family. Lung tissue samples for microarray analysis were obtained through the University of Pittsburgh Health Sciences Tissue Bank. 13 samples were obtained from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplant, and 12 control normal lung tissues obtained from the disease free margins with normal histology of lung cancer resection specimens. The morphologic diagnosis of IPF was based on typical microscopic findings consistent with usual interstitial pneumonia. Total RNA was labeled with Cy3 and hybridized on Agilent 8X15K microRNA array (Agilent Technologies, Santa Clara, CA). After 20 hours hybridization, arrays were washed and scanned according to the manufacturer’s protocol.
Project description:To understand the cellular composition and transcriptional phenotype of fibrotic lung tissue we performed single-cell RNA-seq on stromal, immune, epithelial, and endothelial cell populations from human lung explants. Tissue was collected from normal control lungs, patients with idiopathic pulmonary fibrosis (IPF), and patients with systemic sclerosis associated interstitial lung disease (SSc-ILD). Using the 10X Genomics Chromium platform, we generated transcriptional profiles of approximately 200,500 cells across 4 IPF, 3 SSc-ILD and 3 normal control lungs.
Project description:Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and a-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis.
Project description:Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by the accumulation of myofibroblasts leading to the progressive scarring of the lung. To identify transcriptional gene programs driving persistent fibrosis in aged lungs, we performed a comparative RNA-seq analysis of fibroblasts freshly isolated from young and aged mouse lungs 30 days post-bleomycin injury. We discovered that lung fibroblasts isolated from young animals at this time point post-injury were transcriptionally similar to those isolated from uninjured mice. In contrast, aged lung fibroblasts isolated at the same time point exhibited a sustained pro-fibrotic state characterized by the elevated expression of genes implicated in inflammation, extracellular matrix remodeling, and cell survival. We identified the protein kinase pro-viral integration site of Moloney murine leukemia virus 1 (PIM1) and its direct target Nuclear Factor of Activated T Cells-1 (NFATc1) as putative drivers of the sustained profibrotic gene signatures observed in aged lung fibroblasts post-injury. PIM1 and NFATc1 transcripts were highly enriched in a pathogenic fibroblast population recently discovered in IPF lungs, and their protein expression was detected in fibroblastic foci. Overexpression of PIM1 in normal human lung fibroblasts potentiated their fibrogenic activation and this effect was dependent on NFATc1. Pharmacological inhibition of PIM1 in IPF-derived lung fibroblasts attenuated their activation and sensitized them to apoptotic stimuli. Finally, inhibition of PIM1 strongly reduced the expression of ECM remodeling and pro-survival genes and blocked the secretion of collagen in IPF lung explants ex vivo. Targeting PIM1/NFATc1 axis in pathogenic lung fibroblasts may represent a therapeutic strategy to limit their activation and promote fibrosis resolution in IPF.
Project description:Non-fibrotic central regions of IPF lungs demonstrate massive dysregulated gene expression involving enhanced T-cell differentiation, pulmonary fibrosis idiopathic, and wound healing pathways. Enhancement of myofibroblast features without apparent extra-cellular matrix deposition in the central non-fibrotic region of IPF lungs renders a window for cell-based molecular targeting therapy.