Project description:Second-hand smoke (SHS) exposure during pregnancy has adverse effects on offspring. We used microarrays to characterize the gene expression changes caused by in-utero exposure and adult exposure to SHS in adult mouse lungs.
Project description:Second-hand smoke (SHS) exposure during pregnancy has adverse effects on offspring. We used microarrays to characterize the gene expression changes caused by in-utero exposure and adult exposure to SHS in adult mouse lungs. Left lungs from Balb/c male mice were collected at 15 weeks of age for RNA extraction and hybridization on Affymetrix mouse 430 2.0 microarrays. Based on their smoke exposure status, there are 4 groups of mice, each exposed in-utero to filtered-air or SHS and as an adult to filtered-air or SHS. We extracted RNA from 4 animals from each group for microarray analysis (N = 16 samples).
Project description:SHS exposure during pregnancy has adverse effects on offspring. We used microarrays to characterize the gene expression changes caused by in-utero SHS exposure and adult (19-23 weeks) OVA challenge in 23-week mouse lungs. Left lungs from Balb/c male and female mice were collected at 23 weeks of age for RNA extraction and hybridization on Affymetrix mouse 430 2.0 microarrays. Based on the gender differences and in-utero exposure status, there are 4 groups of mice, females and males, exposed in-utero to filtered-air or SHS. All were exposure to OVA (19-23 weeks). We extracted RNA from 4 animals from each group for microarray analysis (total N = 16 samples).
Project description:SHS exposure during pregnancy has adverse effects on offspring. We used microarrays to characterize the gene expression changes caused by in-utero SHS exposure and adult (19-23 weeks) OVA challenge in 23-week mouse lungs.
Project description:Studying the proteomes of tissue-derived extracellular vesicles (EVs) can lead to the identifica-tion of biomarkers of disease and can provide a better understanding of cell-to-cell communica-tion in both healthy and diseased tissue. The aim of this study was to apply our previously es-tablished tissue-derived EV isolation protocol to mouse lungs in order to determine the changes in the proteomes of lung tissue-derived EVs during allergen-induced eosinophilic airway in-flammation. A mouse model for allergic airway inflammation was used by sensitizing the mice intraperitoneal with ovalbumin (OVA), and one week after the final sensitization, the mice were challenged intranasal with OVA or PBS. The animals were sacrificed 24 h after the final chal-lenge, and their lungs were removed and sliced into smaller pieces that were incubated in cul-ture media with DNase I and Collagenase D for 30 min at 37 °C. Vesicles were isolated from the medium by ultracentrifugation and bottom-loaded iodixanol density cushions, and the proteo-mes were determined using quantitative mass spectrometry. More EVs were present in the lungs of the OVA-challenged mice compared to the PBS-challenged control mice. In total, 4510 proteins were quantified in all samples. Among them, over 1000 proteins were significantly altered (fold change >2), with 614 proteins being increased and 425 proteins being decreased in the EVs from OVA-challenged mice compared to EVs from PBS-challenged animals. The associated cellular components and biological processes were analyzed for the altered EV proteins, and the proteins enriched during allergen-induced airway inflammation were mainly associated with gene on-tology (GO) terms related to immune responses. In conclusion, EVs can be isolated from mouse lung tissue, and the EVs’ proteomes undergo changes in response to allergen-induced airway in-flammation. This suggests that the composition of lung-derived EVs is altered in diseases asso-ciated with inflammation of the lung, which may have implications in type-2 driven eosino-philic asthma pathogenesis.
Project description:Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual BALB/c mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of CBA/Ca mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with OVA as the control. The microarray analysis was performed in quadruplicate. Twelve dual channel microarray slides were used in the overall design of this experiment.
Project description:Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual BALB/c mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of CBA/Ca mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with OVA as the control. The microarray analysis was performed in quadruplicate. Twelve dual channel microarray slides were used in the overall design of this experiment.