Project description:We used unsupervised hierarchical clustering to analyse expression in primary ovarian tumors and associated abdominal deposits. GeneGo pathway analysis of differentially expressed genes between primary tumors and deposits revealed 4 of the top 10 pathways related to cytoskeleton remodeling and cell adhesion. Primary ovarian tumours and matched abdominal deposits were selected for RNA extraction and hybridization on Affymetrix microarrays.
Project description:We used unsupervised hierarchical clustering to analyse expression in primary ovarian tumors and associated abdominal deposits. GeneGo pathway analysis of differentially expressed genes between primary tumors and deposits revealed 4 of the top 10 pathways related to cytoskeleton remodeling and cell adhesion.
Project description:HGSOC, the most aggressive form of OC, is characterized by insidious onset, rapid intraperitoneal spread and development of massive ascites. Peritoneal adhesion was considered as the first step of abdominal metastasis, underscoring that only tumor cells gain access to peritoneal adherence contribute to metastasis. Studies on ovarian cancer progression were mainly focused on the primary and metastatic tumor cells, while understanding of the ascitic tumor cells is limited. We hypothesized that uncovering the gene expression profiles of ascitic tumor cells from high grade serous ovarian cancer patients will allow us to understand more specifically their unique phenotype which mediates the peritoneal adhesion. In this study, gene expression profiling was completed for 15 magnetic sorted tumor cells samples from matched primary tumors, ascites and metastases of 5 high grade serous ovarian cancer patients. By comparing the expression data from ascitic tumor cells with primary and metastasis tumor cells, we identified a set of differential expressed genes in ovarian ascitic tumor cells advantageous for peritoneal adhesion and metastasis. Further study revealed that ascites microenvironment modulated the ascitic tumor cells phenotype and contributed to ovarian cancer dissemination through facilitating CAFs in formation of compact spheroids with ascitic tumor cells. We used microarrays to profile the expression of 15 matched tumor cells samples in order to identify molecular alteration between primary tumor cells, ascitic tumor cells and metastatic tumor cells in high grade serous ovarian cancer.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.