Project description:An efficient protein extraction protocol without any precipitation steps was applied to plant samples from ten economically important plant hosts. Viral proteins from fourteen important viruses (WDV, BYDV/BYDV-PAV, BMV, TAV, CaMV, TMV, TVCV, PPV, TuMV, BCMV, SrMV, SCMV, TRSV, BBWV-2) from seven different families (Geminiviridae, Luteoviridae, Bromoviridae, Caulimoviridae, Virgaviridae, Potyviridae, Secoviridae) were detected in infected samples. Protein database of host proteins and potential pathogen proteins was assembled separately for each host and based on existing online plant virus pathogen lists. For PPV, WDV, BYDV a succesfull discrimination to virus strains (as demonstrated for PPV, WDV) or distinct disease species (BYDV) was also demonstrated.
Project description:Illumina sequencing reveals the first complete genome of Chickpea chlorotic dwarf virus (Geminiviridae: Mastrevirus) from Tomato in Kenya
Project description:Sri Lankan cassava mosaic virus (SLCMV) is a member of cassava mosaic geminiviruses, family Geminiviridae, genus Begomoviruse which causes cassava mosaic disease (CMD). SLCMV is a widespread plant virus in major cassava production area of in Southeast Asia such as Thailand, Vietnam and Cambodia. Cassava cv. Kasetsart 50 (KU50) is one of the most globally famous cultivars in the world which is planted by many Asian countries farmers and industries. A proteomics approach was used to investigate the proteins involved in KU50 leaf response against SLCMV infection. RT-qPCR were applied to validate protein identifications for genes that are differentially expressed.
Project description:In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptomic changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] (SACMV-ZA:99]) and Arabidopsis thaliana, 4 x 44K Agilent microarrays were adopted. After normalization, a 2-fold change filtering of data (p<0.05) identified 1,820 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time (451 genes at 14 dpi, 742 genes at 24 dpi, and 1011 genes at 36 dpi) was observed. This increase in expression, correlated with an increase in SACMV accumulation as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi (1.1x104 virus copies present at 14 dpi, 5.7x104 copies at 24 dpi, and 6.3x104 copies at 36 dpi). Many 2-fold genes were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point. Plant signalling networks were disrupted and manipulated by SACMV-[ZA:99] in order to affect homeostasis and antagonize host’s defense responses. At the same time, an adaptive response was initiated to reprogramme metabolism and divert energy from growth-related processes to defense, all leading to disruption of normal biological host processes. Comparisons between SACMV-[ZA:99] with plant-infecting RNA and DNA viruses revealed similarities and differences in expression patterns among viruses, showing either general defense or virus-specific responses. Within the Geminiviridae family in particular, similarities in cell-cycle regulation and gene expression patterns correlated between SACMV-[ZA:99] and Cabbage leaf curl virus (CaLCuV) but differences were also evident. For instance, CaLCuV showed antagonistic interactions between Salicyclic Acid (SA) and Jasmonic Acid (JA) pathways, whereas SACMV displayed synergism. Differences in gene induction, repression and outcome between the two geminiviruses clearly demonstrated host-specific interactions with SACMV-[ZA:99] leading to infection. To our knowledge this is the first geminivirus study identifying differentially expressed transcripts across 3 time points
Project description:In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptomic changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] (SACMV-ZA:99]) and Arabidopsis thaliana, 4 x 44K Agilent microarrays were adopted. After normalization, a 2-fold change filtering of data (p<0.05) identified 1,820 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time (451 genes at 14 dpi, 742 genes at 24 dpi, and 1011 genes at 36 dpi) was observed. This increase in expression, correlated with an increase in SACMV accumulation as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi (1.1x104 virus copies present at 14 dpi, 5.7x104 copies at 24 dpi, and 6.3x104 copies at 36 dpi). Many 2-fold genes were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point. Plant signalling networks were disrupted and manipulated by SACMV-[ZA:99] in order to affect homeostasis and antagonize hostM-bM-^@M-^Ys defense responses. At the same time, an adaptive response was initiated to reprogramme metabolism and divert energy from growth-related processes to defense, all leading to disruption of normal biological host processes. Comparisons between SACMV-[ZA:99] with plant-infecting RNA and DNA viruses revealed similarities and differences in expression patterns among viruses, showing either general defense or virus-specific responses. Within the Geminiviridae family in particular, similarities in cell-cycle regulation and gene expression patterns correlated between SACMV-[ZA:99] and Cabbage leaf curl virus (CaLCuV) but differences were also evident. For instance, CaLCuV showed antagonistic interactions between Salicyclic Acid (SA) and Jasmonic Acid (JA) pathways, whereas SACMV displayed synergism. Differences in gene induction, repression and outcome between the two geminiviruses clearly demonstrated host-specific interactions with SACMV-[ZA:99] leading to infection. To our knowledge this is the first geminivirus study identifying differentially expressed transcripts across 3 time points A three time-point (14, 24, and 36 dpi) study was carried out to identify differentially expressed genes in SACMV-[ZA:99] infected Arabidopsis leaf cells using a direct comparison design against mock-inoculated controls. Three biological replicates and 1 technical replicate for both SACMV-[ZA:99]-infected and mock-inoculated controls were conducted at each time point.
Project description:The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a phloem–feeding, economically important pest of crops worldwide. In addition to direct damage, it also vectors a number of plant viruses belonging to the family Geminiviridae. Its populations differ biologically with respect to insecticide resistance, virus transmission and host range. Therefore, understanding genetic variation among populations is important for management.