Project description:Rhabdomyosarcoma is a pediatric malignancy thought to arise from the uncontrolled proliferation of myogenic cells. Here, we have generated models of rhabdomyosarcoma in the zebrafish by inducing oncogenic KRASG12D expression at different stages during muscle development. Several zebrafish promoters were used including the cdh15 and rag2 promoters that drive gene expression in early muscle progenitors, and the mylz2 promoter that expresses in differentiating myoblasts. The tumors that developed differed in their ability to recapitulate normal myogenesis. cdh15:KRASG12D and rag2:KRASG12D fish developed tumors that displayed an inability to fully undergo muscle differentiation by histologic appearance and gene expression analyses. In contrast, mylz2:KRASG12D tumors more closely resembled mature skeletal muscle and were most similar to well-differentiated human rhabdomyosarcoma by gene expression. mylz2:KRASG12D fish showed significantly improved survival compared to cdh15:KRASG12D and rag2:KRASG12D fish. Tumor-propagating activity was enriched in myf5-expressing cell populations within all of the tumor types. Our results demonstrate that oncogene expression at different stages during muscle development has profound effects on the ability of tumor cells to recapitulate normal myogenesis, altering the tumorigenic capability of these cells. 32 samples total: 7 WT muscle, 9 mylz2-KRAS, 9 cdh15-KRAS, and 7 rag2-KRAS tumors
Project description:Rhabdomyosarcoma is a pediatric malignancy thought to arise from the uncontrolled proliferation of myogenic cells. Here, we have generated models of rhabdomyosarcoma in the zebrafish by inducing oncogenic KRASG12D expression at different stages during muscle development. Several zebrafish promoters were used including the cdh15 and rag2 promoters that drive gene expression in early muscle progenitors, and the mylz2 promoter that expresses in differentiating myoblasts. The tumors that developed differed in their ability to recapitulate normal myogenesis. cdh15:KRASG12D and rag2:KRASG12D fish developed tumors that displayed an inability to fully undergo muscle differentiation by histologic appearance and gene expression analyses. In contrast, mylz2:KRASG12D tumors more closely resembled mature skeletal muscle and were most similar to well-differentiated human rhabdomyosarcoma by gene expression. mylz2:KRASG12D fish showed significantly improved survival compared to cdh15:KRASG12D and rag2:KRASG12D fish. Tumor-propagating activity was enriched in myf5-expressing cell populations within all of the tumor types. Our results demonstrate that oncogene expression at different stages during muscle development has profound effects on the ability of tumor cells to recapitulate normal myogenesis, altering the tumorigenic capability of these cells.
Project description:Purpose: Construction of 3D zebrafish spatial transcriptomics data for studying the establishment of AP axis. Methods: We performed serial bulk RNA-seq data of zebrafish embryo at three development points. Using the published spatial transcriptomics data as references, we implemented Palette to infer spatial gene expression from bulk RNA-seq data and constructed 3D embryonic spatial transcriptomics. The constructed 3D transcriptomics data was then projected on zebrafish embryo images with 3D coordinates, establishing a spatial gene expression atlas named Danio rerio Asymmetrical Maps (DreAM). Results: DreAM provides a powerful platform for visualizing gene expression patterns on zebrafish morphology and investigating spatial cell-cell interactions. Conclusions: Our work used DreAM to explore the establishment of anteroposterior (AP) axis, and identified multiple morphogen gradients that played essential roles in determining cell AP positions. Finally, we difined a hox score, and comprehensively demonstrated the spatial collinearity of Hox genes at single-cell resolution during development.