Project description:A human microarray comprising 1658 human genome probes was used to evaluate the specific expression of miRNA between brian glioma stem cells (GSC) and normal neural stem cells(NSC). 2 total RNA samples are analyzed, brian glioma stem cells (GSC) and normal neural stem cells(NSC). cell type: brain glioma stem cells:GSC_1, GSC_2, GSC_3 ; cell line: normal neural stem cells: NSC_1, NSC_2, NSC_3 biological replicate: NSC_1, NSC_2, NSC_3; biological replicate: GSC_1, GSC_2, GSC_3
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:A human cDNA microarray comprising 29,187 human genome probes was used to evaluate the transcriptional changes between brian glioma stem cells (GSC) and normal neural stem cells(NSC). There were 6 samples that were analyzed, 3 samples were from glioma stem cells and the other 3 samples form normal neural stem cells were controls. cell type: brain glioma stem cells:GSC_H004, GSC_H005, GSC_H006 ; cell line: normal neural stem cells: NSC_H001, NSC_H002, NSC_H003 biological replicate: NSC_H001, NSC_H002, NSC_H003; biological replicate: GSC_H004, GSC_H005, GSC_H006
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes Sequence library of miRNAs from a single sample of human foetal mesenchymal stem cells. Results tested and confirmed by northern blotting. Please note that only raw data files are available for the embryonic and neual samples and thus, directly submitted to SRA (SRX547311, SRX548700, respectively under SRP042115/PRJNA247767)
Project description:To identify a novel miRNA that is aberrantly expressed in GICs, we analyzed differences in miRNA expression between the human GICs and glioma cell lines and neural stem cells by miRNA microarrays. We examined the miRNA expression profiles of five human GICs that were obtained from human glioma samples and two human glioma cell lines, U87 and U251, and NSC (neural stem cells) as a control.
Project description:A human microarray comprising 1658 human genome probes was used to evaluate the specific expression of miRNA between brian glioma stem cells (GSC) and normal neural stem cells (NSC).
Project description:Gliomas have been proposed to be driven by a population of neural stem-like cells. We isolated a panel of novel human glioma cell lines using adherent neural stem cell conditions. The normal human foetal (hf) NS cells and the tumorigenic glioma NS cell lines were expanded using growth factors EGF and FGF in adherent culture conditions. In these conditions apoptosis and differentiation are suppressed resulting in more homogeneous populations of stem cells than has been reported previously. We included parallel primary biopsies of non-malignant brain tissue ('Normal Brain'). Experiment Overall Design: Cell lines were expanded until 70-90% confluent and then harvested for RNA extraction. All cell lines were gorwn in identical culture media. We also include 'Normal Brain' samples which are regions of the adult human cortex.
Project description:Gliomas have been proposed to be driven by a population of neural stem-like cells. We isolated a panel of novel human glioma cell lines using adherent neural stem cell conditions. The normal human foetal (hf) NS cells and the tumorigenic glioma NS cell lines were expanded using growth factors EGF and FGF in adherent culture conditions. In these conditions apoptosis and differentiation are suppressed resulting in more homogeneous populations of stem cells than has been reported previously. We included parallel primary biopsies of non-malignant brain tissue ('Normal Brain').