Project description:We use RNA sequencing technology in a time course study to measure transcript abundance from three developmental stages in cotyledons and five stages in the trifoliate leaf of Glycine max to identify genes with distinct temporal patterns of expression during leaf or cotyledon development. We also examine the diffrences between these two photosynthetic tissues.
Project description:Molecular characterization of leaf development has not been well studied in soybean. Studies have shown that genomic regions controlling multifoliate leaf morphology in Glycine max also regulates important agronomic characters including yield, seed weight, seed number, shattering, plant growth, and flowering. Two soybean isolines that differed in leaf phenotype were profiled by high throughput RNA and small RNA (sRNA) sequencing. A Clark isoline, homozygous for a dominant mutant allele, Lf1, that specifies a five-foliate compound leaf was compared to wild type Clark that is homozygous for the standard allele that produces trifoliate leaves. Although Lf1 is dominant, it presents variable expressivity as the young plantlets with the Lf1Lf1 genotype initially have trifoliate leaves in the first few weeks, after which they transition to five-foliate leaves. At later developmental stages, they begin to produce four-foliate or trifoliate leaves. In RNA-Seq experiments, a total of 91 and 95 million reads were generated in each lane of Illumina sequencing for the shoot tip of wild type Clark standard (CS) and mutant Clark five-foliate (CF) libraries, respectively. Of these, ~70% million reads aligned to the 78,743 target Glyma models from the reference soybean genome (cv. Williams 82) with maximum of 3 mismatches and up to 25 alignments. Where as in vegetative bud, 56 (CS) to 59 (CF) million reads were produced and of these ~80% aligned to the soybean reference genome. The comparative studies of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. A total of 1,296 and 2,083 genes were up-regulated in the shoot tip of CS and CF, respectively that showed ≥2-fold expression difference. On the contrary in the vegetative bud, much smaller number of genes 14 (CS) and 94 (CF) showed increased transcript abundance. In sRNA analysis, a collection of 200,447 and 268,508 unique sRNA sequences isolated from shoot tip tissue of CS and CF were aligned to the soybean reference genome and their target glyma models were predicted using bioinformatics. This sRNA analysis at genome level reveals differences in size distribution of classes in the CS and CF. This study provides insight into the initial understanding of leaf development in soybean by revealing a number of genes and sRNAs differentially expressed between the CS and CF.
Project description:We use RNA sequencing technology in a time course study to measure transcript abundance from three developmental stages in cotyledons and five stages in the trifoliate leaf of Glycine max to identify genes with distinct temporal patterns of expression during leaf or cotyledon development. We also examine the differences between these two photosynthetic tissues. Time course Expression analysis of Cotyledon Development and Leaf Development using RNAseq on distinct time points. 3 stages of the cotyledon were sequenced with 3 biological replicates in each stage. Five stages of the leaf, determined by physical appearance and plant developmental stage, were collected from the time of soil emergence to the onset of senescence and were sequenced with 3 biological replicates for each stage.
Project description:Cytosine methylation is a base modification that is often used by genomes to store information that is stably inherited through mitotic cell divisions. Most cytosine DNA methylation is stable throughout different cell types or by exposure to different environmental conditions in plant genomes. Here, we profile the epigenomes of ~100 Glycine max lines to explore the extent of natural epigenomic variation. We also use these data to determine the extent to which DNA methylation variants are linked to genetic variations.