Project description:Cajal-Retzius cells have important role in cerebral cortex development, such as secreted Reln protein, maintain normal lays of cerebral cortex. To explore novel secretory protein of Cajal-Retzius cells and to survey the roles of Cajal-Retzius cells in cerebral cortex development, we analyzed transcriptome profiles of 6753 single cells of the embryonic 18 days.
Project description:In a recent egg injection study, we showed that in ovo exposure to perfluorohexane sulfonate (PFHxS) affects the pipping success of developing chicken (Gallus gallus domesticus) embryos. We also found evidence of thyroid hormone (TH) pathway interference at multiple levels of biological organization (i.e. somatic growth, mRNA expression and circulating free thyroxine levels). Based on these findings, we hypothesize that PFHxS exposure interferes with TH-dependent neurodevelopmental pathways. The present study investigates global transcriptional profiles of cerebral cortex tissue from chicken embryos following exposure to a solvent control, 890 or 38,000 ng PFHxS/g egg (n=4-5 per group); doses which lead to the adverse effects above. PFHxS significantly alters the expression (≥1.5-fold, p≤0.001) of 11 transcripts at the low dose (LD; 890 ng/g) and 101 transcripts at the high dose (HD; 38,000 ng/g). Functional enrichment analysis shows that PFHxS affects genes involved in tissue development and morphology, cellular assembly and organization, and cell-to-cell signalling. Pathway and interactome analyses suggest that genes may be affected through several potential regulatory molecules, including integrin receptors, myelocytomatosis viral oncogene and CCAAT/enhancer binding protein. This study identifies key functional and regulatory modes of PFHxS action involving TH-dependent and -independent neurodevelopmental pathways. Some of these TH-dependent mechanisms that occur during embryonic development include tight junction formation, signal transduction and integrin signaling, while TH-independent mechanisms include gap junction intercellular communication. Reference Design. Reference = pool of equal parts of all control and treated samples. Control groups and 2 treatment groups. Control samples were chicken embryonic cerebral cortex exposed DMSO only (solvent). Treatments were: chicken embryonic cerebral cortex exposed to 890 ng/g PFHxS (LD) and 38,000 ng/g PFHxS (HD).
Project description:Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure, Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here we report that a transcriptional factor, RP58, negatively regulates all 4 Id genes (Id1-Id4) in developing cerebral cortex. Consistently, Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore, Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally, we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis. Sample RNAs were obtained from E16.5 Rp58 KO mouse cerebral cortex or control cortex. Two independent total RNA samples from each mouse strain were mixed and purified using the RNeasy Mini Kit (Qiagen). Oligonucleotide microarray analysis was performed using Panorama Micro Array gene expression chips, each containing approx 22000 probe sets (Sigma-Aldrich) according to the manufacturer's instructions.
Project description:Gene expression profiling of the medial (MGE), lateral (LGE) and caudal (CGE) ganglionic eminence, and cerebral cortex (CTX) at various embryonic stages (E12.5, E14 and E16).
Project description:NeuroD2 targets were identified from embryonic day 14.5 cerebral cortex tissue. The cerebral cortex (dorsal telencelphalon) from E14.5 mouse embryos was dissected and ChIP-SEQ was performed using three separate antibodies against NeuroD2.
Project description:Differential gene expression of cerebral cortex might be responsible for distinct neurovascular developments between different mouse strains We used Affymetrix microarray to explore the global gene expression patterns of mouse cerebral cortex of different mouse strains at two developmental stages Cerebral cortex from two mouse strains [C57BL/6J(B6) and C3H/J (C3H)] at post-natal day 1 (p1) and post-natal 11 weeks (11 wk) were harvested for microarray experiments