Project description:Transcriptional profiling of C. tropicalis a cells (CAY1503) in opaque state and overexpressing Wor1 in biofilms hybridized against a universal mixed reference sample of a cells in white and opaque states grown in Spider liquid.
Project description:Transcriptional profiling of C. tropicalis a cells (CAY1503) in opaque state and overexpressing Wor1 in biofilms hybridized against a universal mixed reference sample of a cells in white and opaque states grown in Spider liquid. 2 condition experiment: opaque, tdh3-wor1; 2 biological replicates of each
Project description:Phenotypic plasticity, the ability to switch between different morphological types, plays critical roles in environmental adaptation, leading to infections, and allowing for sexual reproduction in pathogenic Candida species. Candida tropicalis, which is both an emerging human fungal pathogen and an environmental fungus, can switch between two heritable cell types termed white and opaque. In this study, we report the discovery of a novel phenotype in C. tropicalis, named the gray phenotype. Similar to Candida albicans and Candida dubliniensis, white, gray, and opaque cell types of C. tropicalis also form a tristable switching system, where gray cells are relatively small and elongated. In C. tropicalis, gray cells exhibit intermediate levels of mating competency and virulence in a mouse systemic infection model compared to the white and opaque cell types, express a set of cell type-enriched genes, and exhibit both common and species-specific biological features. The key regulators of white-opaque transitions, Wor1 and Efg1, are not required for the gray phenotype. A comparative study of the gray phenotypes in C. tropicalis, C. albicans, and C. dubliniensis provides clues to explain the species differences in terms of virulence, ecological niches, and prevalence among these three species.
Project description:Phenotypic switching is a strategy by which microbial organisms adapt to environmental changes. The human fungal pathogens, Candida albicans and Candida tropicalis, are closely related species and capable of undergoing morphological transitions. C. albicans primarily exists in human or warm-blooded animals as a commensal, whereas C. tropicalis not only exists as a commensal but also is widely distributed in the environment. In this study, To elucidate the regulatory mechanism of environmental pH on white-opaque switching in C. tropicalis, we performed RNA-Seq analysis under three pH conditions (pH 5.0, pH 7.0, and pH 8.0).
Project description:Transcriptional profiling of C. tropicalis a/alpha cells (CAY1511) in white state, opaque state, overexpressing Wor1, or wor1 mutants hybridized against a universal mixed reference sample from all 4 states.
Project description:Transcriptional profiling of C. tropicalis a/alpha cells (CAY1511) in white state, opaque state, overexpressing Wor1, or wor1 mutants hybridized against a universal mixed reference sample from all 4 states. 4 condition experiment: white, opaque, tdh3-wor1, Δ/Δwor1; 4 biological replicates of each
Project description:Candida tropicalis is an opportunistic pathogen which causes candidiasis in immune-compromised individuals. It is one of the members of the non-albicans group of Candida that are known to be azole resistant and is frequently seen in individuals being treated for cancers, HIV-infection and bone-marrow transplant. Although the genome of C. tropicalis was sequenced in the year 2009, the genome annotation has not been supported by experimental validation. In the present study, we have carried out in-depth proteomic profiling of C. tropicalis using high-resolution Fourier transform mass spectrometry and mapped ~44% of the computationally predicted protein-coding genes with peptide level evidence. In addition to identifying 2,740 proteins in the cell lysate of this yeast, we also analysed the proteome of the conditioned media of C. tropicalis culture and identified several unique secreted proteins among a total of 780 proteins. By subjecting the mass spectrometry data derived from cell lysate and conditioned media to proteogenomic analysis, we identified 86 novel genes, 12 novel exons and corrected 49 computationally predicted gene models. To our knowledge, this is the first high-throughput proteomic study to refine the genome annotation of C. tropicalis.
Project description:Homo sapiens fresh whole blood was infected with Candida tropicalis. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Measurement of Candida tropicalis gene expression.