Project description:Todate, the investigation into the molecular mechanisms of testis development and spermatogenesis has largely focused on the role of protein-coding genes and small noncoding RNA including microRNAs and piRNAs. In recent years, long noncoding RNAs (lncRNAs) have been shown to play critical regulatory roles in mammalian development. To understand the role of lncRNAs in development of the mammalian testis and spermatogenesis, we firstly utilized commercial microarray to systematically investigate lncRNAs expression profiles of neonatal (6-day-old) and adult (8-week-old) mouse testis. By comparison the lncRNAs expression profiles of two developmental stage of testes, we obtained the differentially expressed lncRNAs and examined their genomic context, promoter characteristics, neighbored protein-coding genes, provide an important foundation for future research on molecular mechanisms of lncRNAs in mammalian testis development and spermatogenesis.
Project description:This experiment compared the expression of mRNAs and noncoding RNAs during the development of mouse testis. The primary aim of the experiment was to identify ncRNAs that were differentially expressed during this process.
Project description:In animal germline cells, Piwi-interacting RNAs (piRNAs) silence retrotransposons through post-transcriptional and transcriptional mechanisms. However, little is known, especially in mammals, about the functions of piRNAs beyond retrotransposon suppression1-5. In mammalian spermatocytes, piRNAs are known to be abundantly expressed6-10. Here, we show that a subset of coding and noncoding RNAs in mouse spermatocytes is degraded by the piRNA pathway. By analyzing the germline trasnscriptome of mice deficient in piRNA biogenesis, we identify hundreds of mRNAs as direct targets of piRNAs. Remarkably, the 3' untranslated region (UTR) of the mRNAs up-regulated in the piRNA pathway mutants are highly enriched with retrotransposon sequenes, implying that these sequences serve as regulatory elements for piRNA-mediated regulation. Furthermore, deficiencies of piRNAs derived from pseudogenes result in increased mRNA levels of their cognate genes, indicating that pseudogenes regulate their functional cognates via piRNAs. Moreover, we identify a large population of testis-enriched long intergenic noncoding RNAs (lincRNAs), some of which are also degraded by the piRNA pathway. Collectively, our results reveal that the piRNA pathway regulates the expression of both mRNAs and lincRNAs in addition to retrotransposon RNAs during meiosis and the key role of retrotransposons and pseudogenes, two major types of genomic sequences, in this regulation by acting as piRNA sources and/or regulatory elements in target RNAs. Transcriptome of 7 developmental stage during mouse testis development were analyzed by deep sequencing using Illumina HiSeq.