Project description:Background: Pandemic H1N1 influenza A is a newly emerging strain of human influenza that is easily transmitted between people and has spread globally to over 116 countries. Human infection leads to symptoms ranging from mild to severe with lower respiratory complications observed in a small but significant number of infected individuals. Little is currently known about host immunity and Pandemic H1N1 influenza infections. Methods: We examined the pathogenic potential of the pandemic influenza A vaccine strain, A/California/07/2009 (H1N1), in ferrets, and characterized the host immune responses using microarray analysis. Gene expression profiles in lung tissue were compared with those from ferrets infected with A/Brisbane/59/2007. Results: Chemokines CCL2, CCL8, CXCL7 and CXCL10 along with the majority of ISGs were expressed early, correlated to lung pathology, and abruptly decreased expression in 5 days. Interestingly, the drop in innate immune gene expression was replaced by a significant increase in the expression of the adaptive immune genes for granzymes and immunoglobulins. Serum anti-pandemic influenza H1N1 antibodies were also observed on day 7, commensurate with the elimination of viral load. Conclusions: We propose that the innate phase of host immunity causes lung pathology and a delay or failure to effectively switch to the adaptive phase contributes to morbidity and mortality during severe human pandemic H1N1 influenza A infections. Keywords: influenza, immune response, cytokines, chemokines, lung infection, time course In the experiment with influenza A/California/07/2009 (H1N1),15 ferrets were randomly allocated to 5 groups: Day 0 (before infection), and Day 3, 5, 7 and 14 (post infection) with 3 biological replicates for each group. Likewise, a second experiment with A/Brisbane/59/2007 (H1N1) was carried out using the same experimental groups, except for a group in Day 2, instead Day 3. Ferrets were euthanized and lung tissue was excised for RNA purification on the scheduled date. The subsequent gene expression analysis was performed with Affymetrix GeneChip Canine Genome 2.0 Array. Day 0 groups were used as control.
Project description:Pandemic H1N1 influenza A Human infection leads to symptoms ranging from mild to severe with lower respiratory complications observed in a small but significant number of infected individuals. Microarray analysis of the lymph nodes from ferrets infected with A/California/07/2009 shows intense gene upregulation during days 3 and 5 post-infection, and followed by marked downregulation during days 7 and 14 post infection. Gene expression profiles during the upregulation phase show intense chemokine activity, cell replication and activation of the lymphocyte-related signaling pathways. 15 ferrets were randomly allocated to 5 groups: Day 0 (before infection), and Day 3, 5, 7 and 14 (post infection) with 3 biological replicates for each group. Infection was performed with 10E6 EID50 of influenza A/California/07/2009 (H1N1). Ferrets were euthanized and lymph nodes were excised for RNA purification on the scheduled date. The subsequent gene expression analysis was performed with Affymetrix GeneChip Canine Genome 2.0 Array. Day 0 groups were used as control.
Project description:Background: Pandemic H1N1 influenza A is a newly emerging strain of human influenza that is easily transmitted between people and has spread globally to over 116 countries. Human infection leads to symptoms ranging from mild to severe with lower respiratory complications observed in a small but significant number of infected individuals. Little is currently known about host immunity and Pandemic H1N1 influenza infections. Methods: We examined the pathogenic potential of the pandemic influenza A vaccine strain, A/California/07/2009 (H1N1), in ferrets, and characterized the host immune responses using microarray analysis. Gene expression profiles in lung tissue were compared with those from ferrets infected with A/Brisbane/59/2007. Results: Chemokines CCL2, CCL8, CXCL7 and CXCL10 along with the majority of ISGs were expressed early, correlated to lung pathology, and abruptly decreased expression in 5 days. Interestingly, the drop in innate immune gene expression was replaced by a significant increase in the expression of the adaptive immune genes for granzymes and immunoglobulins. Serum anti-pandemic influenza H1N1 antibodies were also observed on day 7, commensurate with the elimination of viral load. Conclusions: We propose that the innate phase of host immunity causes lung pathology and a delay or failure to effectively switch to the adaptive phase contributes to morbidity and mortality during severe human pandemic H1N1 influenza A infections. Keywords: influenza, immune response, cytokines, chemokines, lung infection, time course
Project description:Pandemic H1N1 influenza A Human infection leads to symptoms ranging from mild to severe with lower respiratory complications observed in a small but significant number of infected individuals. Microarray analysis of the lymph nodes from ferrets infected with A/California/07/2009 shows intense gene upregulation during days 3 and 5 post-infection, and followed by marked downregulation during days 7 and 14 post infection. Gene expression profiles during the upregulation phase show intense chemokine activity, cell replication and activation of the lymphocyte-related signaling pathways.
Project description:While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for the modeling of human lung pathology in this species. Genetic determinants of mouse-adapted 2009 H1N1 viral pathogenicity have been identified, but the molecular and signaling characteristics of the host response following infection with this adapted virus have not been described. Here, we compared the gene-expression response following infection of mice with A/CA/04/2009 (CA/04) or the virulent mouse-adapted strain (MA-CA/04). Microarray analysis revealed that increased pathogenicity of MA-CA/04 was associated with: (1) early and sustained inflammatory and interferon response that could be driven in part by interferon regulatory factors (IRFs) and increased NF-kappaB activation, as well as inhibition of the negative regulator TRIM24, (2) early and persistent infiltration of immune cells, including inflammatory macrophages, and (3) the absence of activation of lipid metabolism later in infection, that may be mediated by nuclear receptors inhibition, including PPARG, HNF1A and 4A, with pro-inflammatory consequences. Further investigation of these signatures in the host response to other H1N1 viruses of varied pathogenicity confirmed their general relevance for virulence of influenza virus and suggested that lung response to MA-CA/04 virus was similar to that following lethal H1N1 r1918 influenza virus. This study links for the first time differential activation of IRFs, nuclear receptors, and macrophage infiltration with influenza virulence in vivo.
Project description:Pandemic influenza viruses modulate pro-inflammatory responses that can lead to immunopathogenesis. We present an extensive and systematic profiling of lipids, metabolites and proteins in respiratory compartments of ferrets infected with either 1918 or 2009 human pandemic H1N1 influenza viruses. Integrative analysis of high-throughput omics data with virologic and histopathologic data uncovered relationships between host responses and phenotypic outcomes of viral infection. Pro-inflammatory lipid precursors in the trachea following 1918 infection correlated with severe tracheal lesions. Using an algorithm to infer cell quantities changes from gene expression data, we found enrichment of distinct T cell subpopulations in the trachea. There was also a predicted increase in inflammatory monocytes in the lung of 1918 virus-infected animals that was sustained throughout infection. This study presents a unique resource to the influenza research community and demonstrates the utility of an integrative systems approach for characterization of lipid metabolism alterations underlying respiratory responses to viruses.
Project description:While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for the modeling of human lung pathology in this species. Genetic determinants of mouse-adapted 2009 H1N1 viral pathogenicity have been identified, but the molecular and signaling characteristics of the host response following infection with this adapted virus have not been described. Here, we compared the gene-expression response following infection of mice with A/CA/04/2009 (CA/04) or the virulent mouse-adapted strain (MA-CA/04). Microarray analysis revealed that increased pathogenicity of MA-CA/04 was associated with: (1) early and sustained inflammatory and interferon response that could be driven in part by interferon regulatory factors (IRFs) and increased NFM-oM-^AM-+B activation, as well as inhibition of the negative regulator TRIM24, (2) early and persistent infiltration of immune cells, including inflammatory macrophages, and (3) the absence of activation of lipid metabolism later in infection, that may be mediated by nuclear receptors inhibition, including PPARG, HNF1A and 4A, with pro-inflammatory consequences. Further investigation of these signatures in the host response to other H1N1 viruses of varied pathogenicity confirmed their general relevance for virulence of influenza virus and suggested that lung response to MA-CA/04 virus was similar to that following lethal H1N1 r1918 influenza virus. This study links for the first time differential activation of IRFs, nuclear receptors, and macrophage infiltration with influenza virulence in vivo. Six-to-eight-week-old female BALB/c mice were anesthetized and inoculated with 50 M-NM-<l of phosphate-buffered saline (PBS; Mock) or with 10^6 pfu of virus in a 50 M-NM-<l volume. Nine animals per condition group were used for tarray analysis, two or three animals per time point. There were seven condition groups: A/California/04/2009, MA1-A/California/04/2009, A/Mexico/4482/09, A/Brisbane/59/07, A/New Jersey/8/76, the reconstructed 1918 virus and timeM-bM-^@M-^Smatched mocks.