Project description:E protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity. Analysis of E2-2 and Mtg16 immunoprecipitated chromatin from CAL-1 cell line.
Project description:E protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity. pDC from BM of WT and mtg16-KO mice were negatively selected (lin-CD19, Tcrb, Ter119, NK1.1) and sorted as CD11c+Bst2+ population directly in Trizol. RNA was prepared and deposited for microarray processing.
Project description:E protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity.
Project description:E protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity.
Project description:Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and for the first time demonstrate this lineage specific requirement in the adult organism. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development. ChIP sequenicng was performed for a transcription factor of BCL11A in Cal1 cell line. Input was sequenced and used as a control.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and for the first time demonstrate this lineage specific requirement in the adult organism. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development.
Project description:Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium–induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box–binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model homozygous for a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein–mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16-null colon in the azoxymethane (AOM) /DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.