Project description:E protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity. Analysis of E2-2 and Mtg16 immunoprecipitated chromatin from CAL-1 cell line.
Project description:E protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity. pDC from BM of WT and mtg16-KO mice were negatively selected (lin-CD19, Tcrb, Ter119, NK1.1) and sorted as CD11c+Bst2+ population directly in Trizol. RNA was prepared and deposited for microarray processing.
Project description:E protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity.
Project description:E protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity.
Project description:Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and for the first time demonstrate this lineage specific requirement in the adult organism. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development. ChIP sequenicng was performed for a transcription factor of BCL11A in Cal1 cell line. Input was sequenced and used as a control.
Project description:Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and for the first time demonstrate this lineage specific requirement in the adult organism. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development.
Project description:Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium–induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box–binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model homozygous for a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein–mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16-null colon in the azoxymethane (AOM) /DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.
Project description:The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage- specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed "default" pathway for common dendritic cell progenitors. Raji cells were infected with retroviruses containing pXY-PURO (negative control vector) or pXY-BCL11A-XS. BJAB cells were infected with retroviruses containing pXY-PURO (negative control vector) or pXY-BCL11A-XL. Two arrays measured Raji BCL11A-XS expression and two arrays measured BJAB BCL11A-XL expression.