Project description:Novel fluorescence-activated cell sorting (FACS) strategies to prospectively purify functionally distinct cell populations from the human myofiber-associated (hMFA) cell compartment, including human Skeletal Muscle Precursor cells (hSMPs): HSMPs, identified as CD45-Mac1-GlyA-CD31-CD34-CD56intITGA7hi hMFA cells, are highly enriched for cells expressing the satellite cell marker PAX7 and show efficient myogenic and lack adipogenic capacity. CD45-CD11b-GlyA-CD31-CD34+ hMFA cells (CD34+ cells) do not express PAX7, lack myogenic and exhibit adipogenic activity.
Project description:Novel fluorescence-activated cell sorting (FACS) strategies to prospectively purify functionally distinct cell populations from the human myofiber-associated (hMFA) cell compartment, including human Skeletal Muscle Precursor cells (hSMPs): HSMPs, identified as CD45-Mac1-GlyA-CD31-CD34-CD56intITGA7hi hMFA cells, are highly enriched for cells expressing the satellite cell marker PAX7 and show efficient myogenic and lack adipogenic capacity. CD45-CD11b-GlyA-CD31-CD34+ hMFA cells (CD34+ cells) do not express PAX7, lack myogenic and exhibit adipogenic activity. We used Affymetrix Human Genome U133 Plus 2.0 microarrays to gain deeper insights into the molecular underpinnings functionally and phenotypically discrete human myofiber-associated cell subsets.
Project description:In this study we analyzed the myeloma cell contact-mediated changes on the transcriptome of skeletal precursor cells. Therefore, human mesenchymal stem cells (MSC) and osteogenic precursor cells (OPC) were co-cultured with the representative myeloma cell line INA-6 for 24 h. Afterwards, MSC and OPC were separated from INA-6 cells by fluorescence activated cell sorting. Total RNA of MSC and OPC fractions was used for whole genome array analysis.
Project description:Analysis of the effect of isolation methods (fluorescence activated cell sorting (FACS), positive and negative immunomagnetic selection) on gene expression in human primary CD4+, CD8+ T cells, B cells and monocytes. FACS incurs the least short-term changes in gene expression signature.
Project description:In this study, we investigated signaling pathways in Skeletal muscle precursors that are altered with aging and age-related deficits in muscle regenerative potential. We performed fluorescence activated cell sorting (FACS) to obtain highly purified skeletal muscle satellite cells from young, middle-aged and old mice. Parabiosis experiments indicate that impaired regeneration in aged mice is reversible by exposure to a young circulation, suggesting that young blood contains humoral "rejuvenating" factors that can restore regenerative function. Here, we demonstrate that the circulating protein growth differentiation factor 11 (GDF11) is a rejuvenating factor for skeletal muscle. Supplementation of systemic GDF11 levels, which normally decline with age, by heterochronic parabiosis or systemic delivery of recombinant protein, reversed functional impairments and restored genomic integrity in aged muscle stem cells (satellite cells). Increased GDF11 levels in aged mice also improved muscle structural and functional features and increased strength and endurance exercise capacity. These data indicate that GDF11 systemically regulates muscle aging and may be therapeutically useful for reversing age-related skeletal muscle and stem cell dysfunction. We used Affymetrix Mouse Genome array to identify global transcriptional changes associated with age in skeletal muscle precursors.
Project description:In this study, we investigated signaling pathways in Skeletal muscle precursors that are altered with aging and age-related deficits in muscle regenerative potential. We performed fluorescence activated cell sorting (FACS) to obtain highly purified skeletal muscle satellite cells from young, middle-aged and old mice. Parabiosis experiments indicate that impaired regeneration in aged mice is reversible by exposure to a young circulation, suggesting that young blood contains humoral "rejuvenating" factors that can restore regenerative function. Here, we demonstrate that the circulating protein growth differentiation factor 11 (GDF11) is a rejuvenating factor for skeletal muscle. Supplementation of systemic GDF11 levels, which normally decline with age, by heterochronic parabiosis or systemic delivery of recombinant protein, reversed functional impairments and restored genomic integrity in aged muscle stem cells (satellite cells). Increased GDF11 levels in aged mice also improved muscle structural and functional features and increased strength and endurance exercise capacity. These data indicate that GDF11 systemically regulates muscle aging and may be therapeutically useful for reversing age-related skeletal muscle and stem cell dysfunction.
Project description:Lysophosphatidic acid receptor 1 (LPA1) is a phospholipid which has been linked to adult hippocampal neurogenesis and learning deficits. Here we investigated whether LPA acts directly on the hippocampal stem cells and whether LPA1 could be a functional marker for their prospective isolation. Our results reveal that exogenous LPA increases precursor potential in vitro and net neurogenesis in vivo, an effect that is mediated by Akt activation. Using a mouse reporter line, immunohistochemistry and flow cytometry followed by in vitro cell culture, we show that, in contrast to the subventricular zone, neural precursor cells in the adult mouse dentate gyrus express LPA1-GFP. Fluorescence-activated cell sorting for LPA1-GFP in combination with Prominin-1 and epidermal growth factor receptor expression allowed the efficient isolation of a very pure population of hippocampal stem cells. Transcriptional analysis revealed a profile suggesting immune response and cytokine signaling as molecular regulators of adult hippocampal neural stem cells.
Project description:Muscle regeneration is process where different type of cells are interacting together to ensure a proper muscle regeneration. As Muscle stem cells are the central protagonist of muscle regeneration, we performed single cell RNA-seq to observe the change between the different cell types when SETDB1 is absent in Muscle stem cells. Muscle Stem Cells were isolated from the conditional mice model Setdb1-cKO and were isolated by Fluorescence-activated cell sorting (FACS).
Project description:The satellite cell of skeletal muscle provides a paradigm for quiescent and activated tissue stem cell states. We have carried out transcriptome analyses by comparing satellite cells from adult skeletal muscles, where they are mainly quiescent, with cells from growing muscles, regenerating (mdx) muscles, or with cells in culture, where they are activated. Our study gives new insights into the satellite cell biology during activation and in respect with its niche. We used microarrays to study the global programme of gene expression underlying adult satellite cell quiescence compared to activation states and to identify distinct classes of up-regulated genes in these two different states Skeletal muscle satellite cells were isolated by flow cytrometry using the GFP fluorescence marker from Pax3GFP/+ mice skeletal muscle. The transcriptome of quiescent satellite cells from adult Pax3GFP/+ muscle was compared to the transcriptome of activated satellite cells obtained from three different samples: 1) regenerating Pax3GFP/+:mdx/mdx muscle (Ad.mdx) , 2) growing 1 week old Pax3GFP/+ muscle (1wk), and 3) adult Pax3GFP/+ cells after 3 days in culture (Ad.cult).
Project description:Characterization of human stem cell-derived microglia (hMG) that develop within vascularized human brain organoids under physiological conditions in vivo. We isolated tdT+/CD45+ hMG from five animals and three time points (6, 12 and 24 weeks post transplantation) using Fluorescence-activated cell sorting (FACS), following a strictly controlled ex vivo isolation procedure as previously described (Gosselin et al., 2017) and profiled those cells using single cell RNA sequencing.