Project description:Parasite gene expression differences have been reported previously between RH-ERP, RH-JSR and GT1. To independently confirm these gene expression differences, we examined the parasite gene expression profiles of RH-ERP, RH-JSR and GT1 through microarray. Three type I strains of Toxoplasma gondii were compared with one array each, and these were used to verify data from previous studies.
Project description:Parasite gene expression differences have been reported previously between RH-ERP, RH-JSR and GT1. To independently confirm these gene expression differences, we examined the parasite gene expression profiles of RH-ERP, RH-JSR and GT1 through microarray.
Project description:Toxoplasma gondii is a globally distributed obligate intracellular parasite which can cause zoonotic toxoplasmosis with great harms. The average death time of mice that infected with Toxoplasma gondii RH strain tachyzoites recovered from the liquid nitrogen was shortened after multiple generations. It has been reported that the parasite is in a state of static virulence during cryopreservation and the virulence of the protozoan parasite can be enhanced after continuous passages in hosts under laboratory conditions. However, no research has been conducted to elucidate its biological mechanism. Herein, we sequenced the T. gondii transcriptome using RNA-Seq technology and performed de novo assembly to investigated the virulence factors expression changes by comparing gene expression profiles between incipiently recovered and completely resuscitated tachyzoites. Transcriptome analysis identified 1,951 differentially expressed transcripts in infected liver, of which 1,752 were significantly downregulated and 199 upregulated. We identified many differentially expressed proteins and genes, including serine/threonine kinase, calnexin, myosin and microtubule-associated protein which have previously been reported to be either involved in cell adhesion, parasite gliding or participate in cell invasion. The great majority of the virulence factors including microneme proteins, rhoptry proteins and dense granule proteins were upregulated in fully recovered tachyzoites. The enhanced virulence of recovered Toxoplasma gondii RH strain from the liquid nitrogen is associated with the up-regulated expression of MICs, ROPs and GRAs. Our data will facilitate future genomic research and in-depth annotation of Toxoplasma gondii RH strain genomes. This study provides a profile of the candidate genes that are suspected to be involved with virulence enhancement of recovered Toxoplasma gondii RH strain tachyzoites. Many further studies should be carried out to confirm the function of the candidate genes. Moreover, the preliminary identification of genes and pathways exhibiting differential expression in complete resuscitation stage may further our general understanding of virulence enhancement in this parasite.
Project description:To identify accessible chromatin regions in the human host cells during Toxoplasma parasite infection (uninfected, RH-infected and Pru-infected human foreskin fibroblasts) and in the obligate intracellular parasite Toxoplasma gondii (Type 1 RH strain and Type 2 Pru strain), ATAC-seq was performed.
Project description:Type I strains of Toxoplasma gondii exhibit phenotypic variation, but it is uncertain how differently type I strains modulate the host cell. We determined differential host modulation by type I strains through microarray. HFFs were infected with RH-ERP, RH-JSR and GT1 for 24 hours. Total RNA was isolated and hybridized to Affymetrix GeneChip Human Genome U133A 2.0 arrays.
Project description:The normally virulent type-I RH parasite is rendered avirulent when lacking ROP5. The avirulent phenotype is a consequence of interaction with the host innate immune system. We sought to understand if ROP5 alters host gene expression in order to escape host defenses. We saw no gene expression differences between host cells infected with wt (RH?ku80) or RH?ku80?rop5 parasites. We have included uninfected HFF samples that were harvested in parallel with the infected samples. Host gene expression in response to infection with Toxoplasma gondii. Two independent samples per sample type. Three sample types: HFF infected with RH?ku80, HFF infected with RH?ku80?rop5, and uninfected HFF.
Project description:The Toxoplasma gondii G1 RESTRICTION checkpoint operates the switch between parasite growth and differentiation. The Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2 and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. The TgCycP1 expression interferes with bradyzoite differentiation. The TgCycP2 regulates G1 in the developmentally competent ME49 but not in the developmentally incompetent RH tachyzoites. Examination of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models confirmed TgCycP2 role in bradyzoite replication and revealed that stress induced TgCyc5 is critical for efficient tissue cyst maturation.
Project description:The lytic cycle of the protozoan parasite Toxoplasma gondii, which involves a brief sojourn in the extracellular space, is characterized by defined transcriptional profiles. For an obligate intracellular parasite that is shielded from the cytosolic host immune factors by a parasitophorous vacuole, the brief entry into the extracellular space is likely to exert enormous stress. Due to its role in cellular stress response, we hypothesize that translational control plays an important role in regulating gene expression in Toxoplasma during the lytic cycle. Unlike transcriptional profiles, insights into genome-wide translational profiles of Toxoplasma gondii are lacking. We have performed genome-wide ribosome profiling, coupled with high throughput RNA sequencing, in intracellular and extracellular Toxoplasma gondii parasites to investigate translational control during the lytic cycle. Results: Although differences in transcript abundance were mostly mirrored at the translational level, we observed significant differences in the abundance of ribosome footprints between the two parasite stages. Furthermore, our data suggest that mRNA translation in the parasite is potentially regulated by mRNA secondary structure and upstream open reading frames.