Project description:Combined transcriptomics-assisted bottom-up and top-down MS characterization of the venom proteome of the desert black cobra Walterinnesia aegyptia from Riyadh, SA
Project description:Combined transcriptomics-assisted bottom-up and top-down MS characterization of the venom proteome of the desert black cobra Walterinnesia aegyptia from Sinai Peninsula, Egypt.
Project description:Venom proteomics analysis of Walterinnesia aegyptia and Walterinnesia morgani. For top-down analysis, venom samples were reduced with TCEP and measured via HPLC-MS/MS (Q-Exactive and LTQ-Orbitrap XL).
Project description:In this study, the chemical investigation of Tetraena aegyptia (Zygophyllaceae) led to the identification of a new megastigmene derivative, tetraenone A ((2S, 5R, 6R, 7E)-2-hydroxy-5,6-dihydro-β-ionone) (1), along with (3S, 5R, 6S, 7E)-3-hydroxy-5,6-epoxy-5,6-dihydro-β-ionone- (2), 3,4-dihydroxy-cinnamyl alcohol-4-glucoside (3), 3β,19α-dihydroxy-ursan-28-oic acid (4), quinovic acid (5), p-coumaric acid (6), and ferulic acid (7), for the first time. The chemical structures of 1-7 were confirmed by analysis of their 1D and 2D NMR and HRESIMS spectra and by their comparison with the relevant literature. The absolute configurations of 1 and 2 were assigned based on NOESY interactions and ECD spectra. Conformational analysis showed that 1 existed exclusively in one of the two theoretically possible chair conformers with a predominant s-trans configuration for the 3-oxobut-1-en-1-yl group with the ring, while the half-chair conformer had a pseudo-axial hydroxy group that was predominant over the other half-chair conformation. Boat conformations were not among the most stable conformations, and the s-trans isomerism was in favor of s-cis configuration. In silico investigation revealed that 1 and 2 had more favorable binding interactions with Mpro rather than with TMPRSS2. Accordingly, molecular dynamic simulations were performed on the complexes of compounds 1 and 2 with Mpro to explore the stability of their interaction with the target protein structure. Compounds 1 and 2 might offer a possible starting point for developing covalent inhibitors of Mpro of SARS-CoV-2.
Project description:Absorption of small water-soluble nutrients in vertebrate intestines occurs both by specific, mediated transport and by non-specific, passive, paracellular transport. Although it is apparent that paracellular absorption represents a significant route for nutrient absorption in many birds and mammals, especially small, flying species, its importance in ectothermic vertebrates has not previously been explored. Therefore, we measured fractional absorption (ƒ) and absorption rate of three paracellular probes (arabinose, L-rhamnose, cellobiose) and of 3-O-methyl D-glucose (absorbed by both mediated and paracellular pathways) by the large herbivorous lizard, Uromastyx aegyptia, to explore the relative importance of paracellular and mediated transport in an ectothermic, terrestrial vertebrate. Fractional absorption of 3-O-methyl D-glucose was high (ƒ?=?0.73±0.04) and similar to other vertebrates; ƒ of the paracellular probes was relatively low (arabinose ƒ?=?0.31±0.03, L-rhamnose ƒ?=?0.19±0.02, and cellobiose ƒ?=?0.14±0.02), and decreased with molecular mass, a pattern consistent with other vertebrates. Paracellular absorption accounted for approximately 24% of total 3-O-methyl D-glucose uptake, indicating low reliance on this pathway for these herbivorous lizards, a pattern similar to that found in other terrestrial vertebrates, and different from small flying endotherms (both birds and bats).