Project description:Left and right heart ventricles of adult male mice were profiled to determine the differences in gene expression, control, coordination and signaling fabrics Two-sides (L= left, R = right) gene expression profiling experiment in adult mouse male (M) ventricles (V). 4 biological replicates: MVL1-4, MVR1-4.
Project description:Left and right heart ventricles of adult male mice were profiled to determine the differences in gene expression, control, coordination and signaling fabrics
Project description:Left and right heart atria of adult male mice were profiled to determine the differences in gene expression, control, coordination and signaling fabrics
Project description:Left and right heart atria of adult male mice were profiled to determine the differences in gene expression, control, coordination and signaling fabrics Two-sides (L= left, R = right) gene expression profiling experiment in adult mouse male (M) atria (A). 4 biological replicates: MAL1-4, MAR1-4. This experiment used our standard multiple yellow strategy in which Cy3 and Cy5 labeled biological replicates are cohybridized with a two-color array and each channel is processed independently.
Project description:The molecular mechanisms of progressive right heart failure are incompletely understood. We systematically examined transcriptomic changes occurring over months in isolated cardiomyocytes or whole heart tissues from failing right and left ventricles in rat models of pulmonary artery (PAB) or aortic banding (AOB). Detailed bioinformatics analyses resulted in the identification of gene signatures, protein, and transcription factor networks specific to ventricles and compensated or decompensated disease states. Proteomic and RNA-FISH analyses confirmed PAB-mediated regulation of key genes (including proenkephalin) and revealed spatially heterogeneous mRNA expression in the heart. Intersection of rat PAB-specific gene sets with transcriptome data sets from human patients with chronic thromboembolic pulmonary hypertension led to the identification of more than 50 genes whose expression levels correlated with the severity of right heart disease, including multiple matrix-regulating and secreted factors. These data define a conserved, differentially regulated genetic network associated with right heart failure in rats and humans
Project description:The left and right ventricles of the human heart are functionally and developmentally distinct such that genetic or acquired insults can cause dysfunction in one or both ventricles resulting in heart failure. First, we performed unbiased quantitative mass spectrometry on the myocardium of 25-27 pre-mortem cryopreserved non-diseased human hearts to compare the metabolome and proteome between the normal left and right ventricles. Constituents of gluconeogenesis, glycolysis, lipogenesis, lipolysis, fatty acid catabolism, the citrate cycle and oxidative phosphorylation were down-regulated in the left ventricle, while glycogenesis, pyruvate and ketone metabolism were up-regulated. Inter-ventricular significance of these metabolic pathways was then found to be diminished within end-stage dilated cardiomyopathy and ischaemic cardiomyopathy (n = 30-33), while heart failure-associated pathways were increased in the left ventricle relative to the right within ischaemic cardiomyopathy, such as fluid sheer-stress, increased glutamine to glutamate ratio, and down-regulation of contractile proteins indicating a left ventricular pathological bias.
Project description:Background: Although chamber specialization is critical for proper cardiac function, a comprehensive, genome-wide analysis of the cardiac transcriptome, including identification of regional differences in mRNA and lncRNA expression patterns for the four chambers and interventricular septum of the non-failing human heart, has not been performed. Methods and Results: mRNA and long noncoding RNA (lncRNA) transcriptional profiling of the left (LA) and right (RA) atria, left (LV) and right (RV) ventricles, and the interventricular septum (IVS) of non-failing human hearts (N=8) was performed by deep sequencing. Analysis of the mRNA and lncRNA expression profiles revealed that the different regions of the heart are distinct. Differential expression analysis of paired tissue samples identified 5,747 mRNAs and 2,794 lncRNAs with chamber-enriched expression patterns. The largest differences in mRNA and lncRNA expression were evident between atria and ventricular samples, including regional differences in ~20% of all cardiac expressed mRNA and lncRNA transcripts. Regional differences in mRNA and lncRNA expression were also evident, although to a lesser extent, between the LA and RA, and between the LV, RV and IVS. Gene ontology classification of differentially expressed gene sets revealed regional differences in chamber specialization, including differences in signaling, metabolism, and muscle contraction. Sex differences in mRNA and lncRNA gene expression profiles were also identified between male and female LA and RA samples. Conclusions: There are marked regional differences in the mRNA and lncRNA expression profiles in non-failing adult human heart, and are associated with chamber specialization.
Project description:Analysis of alternative splicing of left ventricles heart samples of 3 DM1 adult versus 3 adult controls PolyA RNA from left ventricles (heart) of 3 controls and 3 DM1 patients were analysed on Exon Array (Affymetrix)
Project description:Analysis of alternative splicing in heart (left ventricles) samples of 3 adult DM1 patients versus 3 adult controls PolyA RNA from left ventricles (heart) of 3 controls and 3 DM1 patients were analysed by massive parrallel sequencing