Project description:A hive product propolis has been used for folk medicine for more than 4, 000 years. So far, several line of studies demonstrated that propolis improved glucose metabolism in obese models. In this study, we inverstigated whether propolis modulates stromal cells of mesenteric adipose tissue of ob/ob mice. Male ob/ob mice were inhjected with Brazilian propolis ethanol extract (100mg/kg ip, twice a week) or vehicle for 12 weeks. Subsequently, vasucular stromal fraction was prepared from mesenteric adipose tissue. Total cellular RNA extracted from the fraction was used for microarray analysis. Biological triplicates were subjected.
Project description:A hive product propolis has been used for folk medicine for more than 4, 000 years. So far, several line of studies demonstrated that propolis improved glucose metabolism in obese models. In this study, we inverstigated whether propolis modulates stromal cells of mesenteric adipose tissue of ob/ob mice.
Project description:We showed that Brazilian green propolis attenuated Aβ-induced memory and learning impairment. Comprehensive gene expression analysis demonstrated that Brazilian green propolis treatment suppressed inflammation and immune responses via immune cells such as microglia and astrocytes in the brain. These results indicate the potential of Brazilian green propolis as a promising ingredient for preventing AD-type dementia.
Project description:Transcriptomic analysis comprehensively revealed the metabolic improvement effects of di-SQ on the liver and white adipose tissue in ob/ob mice. Di-SQ demonstrated effects in improving inflammation and lipid metabolism in both the liver and white adipose tissue of ob/ob mice and restored the expression of genes and GO terms associated with mitochondrial respiration and glucose metabolism. The metabolic disorder observed in untreated ob/ob mice was reversed by a 42-day-di-SQ treatment, the di-SQ treated ob/ob mice showed a gene expression pattern in key metabolic pathways and processes that more closely resembles that of wild-type mice.
Project description:ob/ob mice is an obese mice. CIDE family proteins including Cidea, Cideb and Cidec play important role in lipid metabolism. Cidea is mainly expressed in the brown adipose tissue (BAT). Cidec is mainly expressed in the BAT and white adipose tissue (WAT). We generated ob/ob/Cidea-/-/Cidec-/- mice to investigate the phenotype of fat tissue. ob/ob/Cidea-/-/Cidec-/- mice are lean when compared with ob/ob mice. The tissue weight and TAG content of BAT and WAT was extreamly decreased in ob/ob/Cidea-/-/Cidec-/- mice compared with that in ob/ob mice. We next extract the total RNA from the BAT and WAT of ob/ob and ob/ob/Cidea-/-/Cidec-/- mice, to perform microarray analysis using Mouse Gene 1.0 ST array system, Affymetrix. We then analysised the up-regulated and down regulated pathways.
Project description:Obesity is a strong risk factor for the development of type 2 diabetes. We have previously reported that in adipose tissue of obese (ob/ob) mice, the expression of adipogenic genes is decreased. When made genetically obese, the BTBR mouse strain is diabetes susceptible and the C57BL/6J (B6) strain is diabetes resistant. We used DNA microarrays and RT-PCR to compare the gene expression in BTBR-ob/ob versus B6-ob/ob mice in adipose tissue, liver, skeletal muscle, and pancreatic islets. Our results show: 1) there is an increased expression of genes involved in inflammation in adipose tissue of diabetic mice; 2) lipogenic gene expression was lower in adipose tissue of diabetes-susceptible mice, and it continued to decrease with the development of diabetes, compared with diabetes-resistant obese mice; 3) hepatic expression of lipogenic enzymes was increased and the hepatic triglyceride content was greatly elevated in diabetes-resistant obese mice; 4) hepatic expression of gluconeogenic genes was suppressed at the prediabetic stage but not at the onset of diabetes; and 5) genes normally not expressed in skeletal muscle and pancreatic islets were expressed in these tissues in the diabetic mice. We propose that increased hepatic lipogenic capacity protects the B6-ob/ob mice from the development of type 2 diabetes. Diabetes 52:688â700, 2003 Experiment Overall Design: Four B6-ob/ob and four BTBR-ob/ob male mice at 14 weeks of age were used in the microarray study. RNA samples from two individuals were pooled for each tissue, and each pooled RNA sample was applied to an Affymetrix MGU74AV2 array. Because of the scarcity of islets in the BTBR-ob/ob mice, 4 additional mice were pooled to obtain islet RNA from these animals. Sixteen MGU74Av2 arrays (2 strains X 4 tissues X 2 replicates = 16 arrays) were used to monitor the expression level of â12,000 genes or ESTs.
Project description:Obesity is a strong risk factor for the development of type 2 diabetes. We have previously reported that in adipose tissue of obese (ob/ob) mice, the expression of adipogenic genes is decreased. When made genetically obese, the BTBR mouse strain is diabetes susceptible and the C57BL/6J (B6) strain is diabetes resistant. We used DNA microarrays and RT-PCR to compare the gene expression in BTBR-ob/ob versus B6-ob/ob mice in adipose tissue, liver, skeletal muscle, and pancreatic islets. Our results show: 1) there is an increased expression of genes involved in inflammation in adipose tissue of diabetic mice; 2) lipogenic gene expression was lower in adipose tissue of diabetes-susceptible mice, and it continued to decrease with the development of diabetes, compared with diabetes-resistant obese mice; 3) hepatic expression of lipogenic enzymes was increased and the hepatic triglyceride content was greatly elevated in diabetes-resistant obese mice; 4) hepatic expression of gluconeogenic genes was suppressed at the prediabetic stage but not at the onset of diabetes; and 5) genes normally not expressed in skeletal muscle and pancreatic islets were expressed in these tissues in the diabetic mice. We propose that increased hepatic lipogenic capacity protects the B6-ob/ob mice from the development of type 2 diabetes. Diabetes 52:688–700, 2003 Keywords: Genetic modifications
Project description:Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR (db/db) and leptin (ob/ob) are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4, a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO cite, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Surprisingly, exogenous ANGPTL4 treatment not only promoted HO, but facilitated the transformation from white to brown adipose tissue in mice. These findings identify ANGPTL4 as a novel ligand for LepR to stimulate HO and regulate fat metabolism.
Project description:Adipose tissue from mesenteric and subcutaneous depots from 11beta-HSD1 knockout (KO) and wild-type (WY) mice. Five biological replicates in each group: mesenteric KO, mesenteric WT, subcutaneous KO, subcutaneous WT.