Project description:Segmental allergen challenge increases the percentage of eosinophils in bronchoalveolar lavage (BAL) cells. Mepolizumab, an anti-IL-5 therapeutic antibody, decreases the number of eosinophils in bronchoalveolar lavages (BAL). The use of both procedures allows to define genes that are either expressed by eosinophils or dependent on eosinophil presence in the airways. Cells from Bronchoalveolar lavages (BAL) are obtained by bronchoscopy before (V5) and 48 h after a segmental allergen challenge (V6) in atopic and mild astmatics. This procedure was repeated in the same two subjects 2 months later and 1 month after an injection of mepolizumab (V22 is before challenge and V23 after challenge). Cells were immediately lysed and isolated total RNAs were analyzed using the Human Genome 1.0 ST GeneChip arrays (Affymetrix, Santa Clara, CA).
Project description:Mild asthmatics who met the criteria of the IRB approved protocol of Sub-segmental Bronchial Provocation with Allergen were recruited. The subjects were challenged with sensitive allergen through bronchoscopy. Bronchoalveolar lavage (BAL) fluids were collected before and at 48 hours after allergen challegen. From the BAL fluids, alveolar macrophages were purifed and their RNA was extracted. Total 138 genes including five house keeping genes were evaluated. Two samples of alveolar macrophages from single subject, before and 48 hours after allergen challenge, were directly compared in terms of the expression of inflammatory, chemokine, cytokine genes and their receptor genes.
Project description:Mild asthmatics who met the criteria of the IRB approved protocol of Sub-segmental Bronchial Provocation with Allergen were recruited. The subjects were challenged with sensitive allergen through bronchoscopy. Bronchoalveolar lavage (BAL) fluids were collected before and at 48 hours after allergen challegen. From the BAL fluids, alveolar macrophages were purifed and their RNA was extracted. Total 138 genes including five house keeping genes were evaluated.
Project description:Segmental allergen challenge increases the percentage of eosinophils in bronchoalveolar lavage (BAL) cells. Mepolizumab, an anti-IL-5 therapeutic antibody, decreases the number of eosinophils in bronchoalveolar lavages (BAL). The use of both procedures allows to define genes that are either expressed by eosinophils or dependent on eosinophil presence in the airways.
Project description:We performed single cell RNA sequencing on bronchial cells from human bronchoalveolar lavage fluid from 4 independent study participants who had asthma and who underwent lung segmental allergen challenge with diluent or allergen (either house duse mite or cat). The goal was to assess total mRNAs in single cell preparations of bronchoalveolar lavage cells.
Project description:Segmental instillation of lipopolysaccharide (LPS) by bronchoscopy can be used as a model to safely induce transient airway inflammation in the human lung. The LPS challenge model enables investigation of cellular mechanisms involved in pulmonary inflammatory processes as well as pharmacodynamic analysis of investigational drugs for the treatment of respiratory diseases. Aim of this work was to describe the transcriptomic profile of the human segmental LPS challenge model with contextualization to major respiratory diseases. Pre-challenge bronchoalveolar lavage fluid (BAL) and biopsies were sampled from twenty-eight smoking, healthy subjects, followed by segmental LPS challenge and saline control challenge. Twenty-four hours post instillation, BAL and biopsies were collected from the challenged lung segments. Total RNA of cells from BAL and biopsy samples were sequenced for subsequent data analysis. Differential gene expression analysis resulted in 6316 upregulated differentially expressed genes (DEGs) and 241 downregulated DEG in BAL, but only one downregulated DEG in biopsy samples after LPS challenge compared to saline challenge. Upregulated DEG in BAL were related to molecular functions such as “Inflammatory response” or “antimicrobial humoral immune response mediated by antimicrobial peptide”, enriched biological processes such as “chemokine receptor activity”, and upregulated pro-inflammatory pathways such as “Wnt signaling pathway”, “Ras signaling pathway” or “JAK-STAT signaling pathway”. Furthermore, the segmental LPS challenge model resembled aspects of the five most prevalent respiratory diseases chronic obstructive pulmonary disease (COPD), asthma, pneumonia, tuberculosis and lung cancer and featured similarities with acute exacerbations in COPD (AECOPD) and community-acquired pneumonia (CAP). Overall, our study provides extensive information about the transcriptomic profile from BAL cells and mucosal biopsies following LPS challenge in healthy smokers. It expands the knowledge about the LPS challenge model providing potential overlap with respiratory diseases in general and infection-triggered respiratory insults such as AECOPD in particular.
Project description:Allergic asthmatic, allergy only, asthma only (no allergy), and non-allergic non-asthmatic (control) subjects underwent bronchoscopy with instillation of saline, lipopolysaccharide (LPS), and house dust mite antigen in separate subsegmental bronchi. Bronchoalveolar lavage (BAL) fluid was collected four hours later (three samples per subject). Inflammatory cells from each specimen were isolated and RNA was extracted for microarray analysis. Keywords: gene expression arrays (two-dye: sample against common 'universal' reference RNA)
Project description:Background: Allergen inhalation challenge in mild asthmatics induces airflow obstruction, airway hyperresponsiveness and inflammation, providing a model for hypothesis-generating experiments to understand regulation of these responses. We have sought to evaluate the peripheral whole blood transcriptome, post-challenge compared to pre-challenge, and to determine the effect of globin mRNA reduction methodology. Methods: Asthmatic subjects (20-60 years of age, with stable, mild allergic asthma, n=17) underwent allergen inhalation challenges. All subjects had an early asthmatic response of ≥ 20% fall in FEV1; most had a late phase response of ≥ 15% fall in FEV1. Blood was collected immediately prior to, and two hours after allergen challenge. Transcriptome analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST arrays, with and without globin mRNA reduction (PAX-GR and PAX-NGR, respectively) in 4 subjects. Replication studies for expression of nine genes contributing to the top canonical pathway, Nrf2-mediated oxidative stress response pathway, were performed with 5 independent subjects with microarray data, also with the same 4 subjects had microarray results and 8 other independent subjects with QPCR. Data were analyzed using paired t-test and Partek® Genomics Suite™. Results: The number of differentially expressed probe sets from PAX-NGR samples was twice that of PAX-GR samples. Paired analysis of each subjects' pre- and post-sample additionally demonstrated twice the power to detect differentially expressed probe sets. The Nrf2-mediated oxidative stress response pathway was identified as the top canonical pathway in the PAX-NGR samples. ATP-binding cassette sub-family C member 1 (ABCC1) gene was significantly reduced two hours after allergen challenge in the 5 subjects’ microarray dataset and the 2 QPCR replication datasets with P < 0.05. Conclusions: Globin mRNA reduction does not provide benefits to detect differentially expressed genes during allergen inhalation challenge. Allergen inhalation challenge is associated with decreased peripheral blood cell transcript level of ABCC1 gene. 26 array were analyzed. We first identified differentially expreed genes between post- and pre-challenge samples from 4 asthmatic subjects by using globin reduction samples and non-globin reduction samples (16 arrays). Then we replicated our findings using 10 arrays from 5 asthmatic subjects challenged with allergen. Includes 4 normal blood samples.
Project description:Background: Allergen inhalation challenge in mild asthmatics induces airflow obstruction, airway hyperresponsiveness and inflammation, providing a model for hypothesis-generating experiments to understand regulation of these responses. We have sought to evaluate the peripheral whole blood transcriptome, post-challenge compared to pre-challenge, and to determine the effect of globin mRNA reduction methodology. Methods: Asthmatic subjects (20-60 years of age, with stable, mild allergic asthma, n=17) underwent allergen inhalation challenges. All subjects had an early asthmatic response of ≥ 20% fall in FEV1; most had a late phase response of ≥ 15% fall in FEV1. Blood was collected immediately prior to, and two hours after allergen challenge. Transcriptome analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST arrays, with and without globin mRNA reduction (PAX-GR and PAX-NGR, respectively) in 4 subjects. Replication studies for expression of nine genes contributing to the top canonical pathway, Nrf2-mediated oxidative stress response pathway, were performed with 5 independent subjects with microarray data, also with the same 4 subjects had microarray results and 8 other independent subjects with QPCR. Data were analyzed using paired t-test and Partek® Genomics Suite™. Results: The number of differentially expressed probe sets from PAX-NGR samples was twice that of PAX-GR samples. Paired analysis of each subjects' pre- and post-sample additionally demonstrated twice the power to detect differentially expressed probe sets. The Nrf2-mediated oxidative stress response pathway was identified as the top canonical pathway in the PAX-NGR samples. ATP-binding cassette sub-family C member 1 (ABCC1) gene was significantly reduced two hours after allergen challenge in the 5 subjects’ microarray dataset and the 2 QPCR replication datasets with P < 0.05. Conclusions: Globin mRNA reduction does not provide benefits to detect differentially expressed genes during allergen inhalation challenge. Allergen inhalation challenge is associated with decreased peripheral blood cell transcript level of ABCC1 gene.
Project description:TSLP pathway blockade is a potential strategy for asthma treatment, as TSLP modulates cytokine production by mast cells and regulates the activation of dendritic cells (DCs), which prime the differentiation of naM-CM-/ve T cells into inflammatory Th2 cells. To assess the effect of TSLPR blockade on the development of allergic inflammation and bronchoconstriction in Cynomolgus monkeys after Ascaris suum allergen challenge. Antibodies against human TSLPR were generated and confirmed to be cross-reactive to cynomolgus. Animals were dosed weekly with either vehicle (n=8) or TSLPR HuMAb (n=8) for 6 weeks and their responses to A.Suum challenge at baseline, week 2 and week 6 were assessed. Antibody-treated animals showed reduced bronchoalveolar lavage (BAL) eosinophil counts (p=0.04), reduced lung resistance (RL) area under the curve (p=0.04), and reduced IL-13 cytokine levels in BAL fluid (p=0.03) in response to challenge at 6 weeks compared to vehicle-treated animals. To understand the molecular changes underlying these differences, BAL fluid samples pre- and post-challenge were profiled using microarrays. Genes up-regulated by allergen challenge overlapped strongly with 11 genes up-regulated in DCs when stimulated by TSLP (TSLP-DC signature). The number of genes differentially expressed in response to challenge was reduced in aTSLPR-treated animals after 6 weeks relative to vehicle-treated animals. Expression of the TSLP-DC gene signature was also significantly reduced in aTSLPR-treated animals (p = 0.05). These results demonstrate promising efficacy for TSLPR blockade in an allergen challenge model where TSLP activation of DCs may play a key role. Animals were dosed weekly with either vehicle (n=8) or TSLPR HuMAb (n=8) for 6 weeks and their responses to A.Suum challenge at baseline, week 2 and week 6 were assessed. One monkey in the aTSLPR-treated group expired during the study for reasons not linked to drug safety and tolerability. BAL fluid samples for all animals were subject to gene expression profiling for pre-challenge, 8h and 24h post-challenge timepoints, at baseline, week 2 and week 6. This amounted to a total of 135 microarrays. Data from 8 animals were excluded as outliers, determined by PCA.