Project description:The goal of these experiments was to define the targets of Ty3 transposition in Saccharomyces cerevisiae. Ty3 is a retroviruslike element that is found at the transcription initiation site of chromosomal tRNA genes.
Project description:Gentamicin is a highly efficacious antibiotic against gram-negative bacteria. However, its usefulness in treating infection is compromised by its poorly understood renal toxicity. This toxic effect is seen in a variety of organisms. While the yeast Saccharomyces cerevisiae is relatively insensitive to gentamicin, mutations in any one of 20 or so genes causes a dramatic increase in sensitivity. Many of these genes encode proteins important for translation termination or specific protein trafficking complexes. Here, we demonstrate by microarray analysis that gentamicin treatment leads to dramatic decreases in genes under the control of the MADS box protein Mcm1, including genes encoding products involved in mating, nitrogen utilization, and ribosome biogenesis. Furthermore, microarray analysis also demonstrates an increase in a Rlm1-dependent set of genes involved in maintaining the structure of the cell wall that are also induced by the antifungal agents caspofungin and calcofluor white. Subsequent inspection of the physical and genetic interactions of the remaining gentamicin sensitive mutants revealed a network centered around chitin synthase and the Arf Pathway. Furthermore, conditional arf1 mutants are hypersensitive to gentamicin even under permissive conditions. These results suggest that gentamicin may act as a cell wall stress, possibly by disrupting Arf-dependent trafficking of proteins involved in forming the cell wall. Keywords: disease state analysis, comparative genomic analysis +/- gentamicin treatment
Project description:To understand the gene expression in Saccharomyces cerevisiae under fermentative and respiraotry conditions, we perfomred the genome-wide gene expression profiling for the log-phase cells of S. cerevisiae wild type, sef1 deletion, and hyperactive SEF1-VP16 mutants under the YPD and YPGly conditions.
Project description:This project aims to identify novel RNA binding proteins in the baker's yeast, Saccharomyces cerevisiae. Since interactions between RNAs and proteins may be transient, yeast cells were crosslinked with UV light at 254 nm which promotes the covalent link between proteins and RNAs. After this, polyadenylated mRNAs were purified via oligo(dT) coupled to magentic beads under stringet conditions. Finally, samples were subjected to mass spectrometry analysis. To rule out the possibility of RNA-independent binding we also analysed other samples: i) samples digested with RNase one; ii) samples where we performed competition assays with polyadenylic acid.
Project description:To investigate the possible range of additional RNase P substrates in vivo a strand-specific, high-density microarray was used to analyze what RNA accumulates with a mutation in the catalytic RNA subunit of nuclear RNase P in Saccharomyces cerevisiae. A wide variety of noncoding RNAs were shown to accumulate, suggesting nuclear RNase P participates in the turnover of normally unstable nuclear RNAs. In some cases, the accumulated noncoding RNAs were shown to be antisense to transcripts that commensurately decreased in abundance. Pre-mRNAs containing introns also accumulated broadly, consistent with either compromised splicing or failure to efficiently turnover pre-mRNAs that do not enter the splicing pathway. Taken together with the high complexity of the nuclear RNase P holoenzyme and its relatively non-specific capacity to bind and cleave mixed sequence RNAs, these data suggest nuclear RNase P facilitates turnover of nuclear RNAs in addition to its role in pre-tRNA biogenesis.
Project description:The intracellular metabolome of S. cerevisiae mutants in the gene AYT1 were measured under glucose growth conditions, as well as growth on oleate.