Project description:We report the transcriptome profiles of rat vascular smooth muscle cells (rVSMCs) treated by cholesterol loading or NOTCH inhibitor DAPT through RNA-Seq. rVSMCs were resistant to cholesterol loading alone that only promoted limited inflammatory responses. DAPT treatment alone also resulted in limited gene expression changes related with VSMC differentiations. Interestingly, cholesterol loading supplemented with DAPT resulted in significant changes of gene expression in rVSMCs and promoted VSMC-to-macrophage-like cell transformations.
Project description:In this study, murine primary aortic smooth muscle cells (SMCs) were transcriptionally profiled at baseline, after 3 d of cholesterol loading, and after 3 d of subsequent cholesterol unloading with HDL treatment, to identify vascular SMC genes that are transcripionally dysregulated in response to cholesterol loading and/or unloading.
Project description:Acquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity.
Project description:Acquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity.
Project description:Loss of contractility and acquisition of an epithelial phenotype of vascular smooth muscle cells (VSMCs) are key events in proliferative vascular pathologies such as atherosclerosis and post-angioplastic restenosis. There is no proper cell culture system allowing VSMC differentiation so that it is difficult to delineate the molecular mechanism responsible for proliferative vasculopathy. We investigated whether a micro-patterned substrate could restore the contractile phenotype of VSMCs in vitro. To induce and maintain the differentiated VSMC phenotype in vitro, we introduced a micro-patterned groove substrate to modulate the morphology and function of VSMCs.
Project description:Vascular calcification is a hallmark of atherosclerosis and end-stage renal disease (ESRD). However, the molecular mechanism of vascular calcification is poorly understood. Diabetes mellitus is increasingly recognized as the most important cause for atherosclerosis and ESRD. Emerging evidence supports the concept that vascular calcification resembles the process of osteogenesis, in which the vascular smooth muscle cells (VSMC) undergo osteochondrogenic differentiation. Recently, we have established an in vitro calcification system with primary mouse VSMC. With the use of osteogenic stimuli, we induced trans-differentiation of primary mouse VSMC into bone-like cells. Interestingly stroptozotocin (STZ), O-GlcNAcase inhibitor and a drug that has been used to induce diabetes in mice, was able to induce calcification of VSMC and the expression of the osteogenic transcription factor Runx2, suggesting glycosylation may be involved in regulation of Runx2. We have reported an essential role of Runx2 in oxidative stress-induce VSMC calcification and have recently generated a tissue specific mouse with Runx2 ablation in smooth muscle cells. Therefore, we will use STZ and other relevant reagents in the glucose synthesis/metabolism pathways as stimuli for VSMC calcification to characterize the glycogene profiles during VSMC calcification. Results from VSMC of Runx2 knockout mice will be compared with those from control mice to determine the regulation of calcification-associated glycogenes by Runx2 in response to STZ. These studies will provide foundation for further mechanistic studies and may lead to identification of novel strategies and targets for diabetes-induced vascular calcification. To examine vascular smooth muscle cells (VSMC) under two conditions: 1) wild-type VSMC differentiated into bone-like cells with osteogenic media, 2) wild-type VSMC treated with STZ and osteogenic media
Project description:Vascular calcification is a complex process and has been associated with aging, diabetes, chronic kidney disease (CKD). Although there have been several studies studying the role of miRNAs (miRs) in bone osteogenesis, little is known about the role of miRs in vascular calcification and their role in the pathogenesis of vascular abnormalities. Matrix vesicles (MV) are known to play an important role in initiating vascular smooth muscle cell (VSMC) calcification. In the present study, we performed miRNA microarray analysis to identify the dysregulated miRs between MV and VSMC derived from CKD rats to understand the role of post-transcriptional regulatory networks governed by these miRNAs in vascular calcification and to uncover the differential miRNA content of MV. The percentage of miRNA to total RNA was increased in MV compared to VSMC. Comparison of expression profiles of miRNA by microarray demonstrated 33 miRs to be differentially expressed with the majority (~ 57%) of them down-regulated. Target genes controlled by differentially expressed miRNAs were identified utilizing two different complementary computational approaches Miranda and Targetscan to understand the functions and pathways that may be affected due to the production of MV from calcifying VSMC thereby contributing to the regulation of genes by miRs. We found several processes including vascular smooth muscle contraction, response to hypoxia and regulation of muscle cell differentiation to be enriched. Signaling pathways identified included MAP-kinase and wnt signaling that have previously been shown to be important in vascular calcification. In conclusion, our results demonstrate that miRs are concentrated in MV from calcifying VSMC, and that important functions and pathways are affected by the miRs dysregulation between calcifying VSMC and the MV they produce. This suggests that miRs may play a very important regulatory role in vascular calcification in CKD by controlling an extensive network of post-transcriptional targets. Compare miRNA from matrix vesicles to miRNA from vascular smooth muscle cells that gave rise to the matrix vesicles from 3 sets of MV and VSMC derived from 3 normal and 3 CKD rats
Project description:Vascular smooth muscle cells (VSMC) and endothelial cells (EC) were stimulated with factor VII activating protease and transcriptional changes were determined.
Project description:There is a remodelling process which occurs in affected vessels during GCA and vascular smooth muscle cells are key cells in this process. Thickening of vessel might be responsible for vessel occlusion. We isolated vascular smooth muscle cells from temporal artery biopsies of patients with suspected GCA and used expression chips in order to identify genes up- and down-regulated in VSMC from patients with proven GCA compared to VSMC from patients with possible GCA and to VSMC from patients with another diagnosis.
Project description:Crotonylation of histones is discovered of late as one of post-translational modification that can regulate gene expression. However, the function of crotonylation on non-histone proteins in vascular smooth muscle cells (VSMC) is unclear. Here, we aim to use modification and proteomic analysis to find the cellular characteristic of crotonylated non-histone proteins and the crosstalk with ubiquitinated proteins in vascular smooth muscle cell (VSMC) phenotypic remodeling. We performed modification and proteomic analysis of VSMCs before and after stimulated with platelet-derived growth factor-BB (PDGF-BB). The crotonylated and ubiquitinated pan-antibody was used to enrich the protein and then subjected to high-throughput mass spectrometry analysis. The enrichment analysis was performed within differentially modified proteins in regards to GO terms, KEGG and protein domain.