Project description:Examination of DPY-30, DPY-27, SDC-3, DPY-26, DPY-28, SDC-2, and SUMOylated DPY-27 binding in wild type embryos and smo-1 RNAi treated embryos
Project description:High-throughput sequencing of mixed-stage Caenorhabditis elegans small RNAs. total RNA, ~18-26nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH Keywords: high-throughput 454 sequencing
Project description:modENCODE_submission_6235 This submission comes from a modENCODE project of Jason Lieb. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The focus of our analysis will be elements that specify nucleosome positioning and occupancy, control domains of gene expression, induce repression of the X chromosome, guide mitotic segregation and genome duplication, govern homolog pairing and recombination during meiosis, and organize chromosome positioning within the nucleus. Our 126 strategically selected targets include RNA polymerase II isoforms, dosage-compensation proteins, centromere components, homolog-pairing facilitators, recombination markers, and nuclear-envelope constituents. We will integrate information generated with existing knowledge on the biology of the targets and perform ChIP-seq analysis on mutant and RNAi extracts lacking selected target proteins. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: N2; Developmental Stage: Mixed Embryo; Genotype: wild type; Sex: mixed Male and Hermaphrodite population; EXPERIMENTAL FACTORS: Developmental Stage Mixed Embryo; temp (temperature) 20 degree celsius; Strain N2; Antibody SDC-1 SDQ3856 (target is SDC-1)
Project description:Comprehensive list of SUMO targets from the nematode Caenorhabditis elegans. SUMO conjugates isolated from transgenic worms carrying 8His and GFP tagged SUMO. The constructs rescues the lethal knock-out of a single SUMO gene, smo-1. SUMO conjugates where isolated from heat shock, arsenite exposure, and UV treated SUMO-GFP worms as well as from control non treated animals. In parallel identical purification procedure was performed with non-transgenic worms and proteins identified with this control where excluded.
Project description:Dysfunction of the motor subunit of the TIM23 translocase, the PAM complex located on the matrix side of the mitochondrial inner membrane in Saccharomyces cerevisiae, was shown to cause a decrease in mitochondrial protein import and precursor accumulation in the cytosol. We used an analogous model to study the non-mitochondrial response to defective mitochondrial import machinery in Caenorhabditis elegans in which we depleted DNJ-21 as the functional homolog of yeast Pam18. To gain a broader insight in potential changes in Caenorhabditis elegans proteome upon DNJ-21 depletion we performed a quantitative, label-free proteomics analysis. We compared protein levels upon knockdown of dnj-21 (dnj-21 RNAi) with control conditions (Empty vector RNAi). Synchronized N2 wild type worms were grown on NGM plates seeded with E. coli HT115(DE3) transformed with a construct targeting dnj-21 gene or with empty vector L4440 as a control.
Project description:Comparison of gene expression profiles from C. elegans mutant strain CF1038 treated with L4440 and K02A4.1 RNAi and C. elegans mutant strain TU3311 treated with L4440 and B0412.2 RNAi for 5 days after L4 larvae stage. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the C. elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12 bp consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and non-compensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome. Experiment Overall Design: For microarray analysis, the nematode strains and number of experiments was as follows: TY2222, her-1(hv1y101); xol-1(y9) sdc-2(y74) unc-9(e101), XO embryos (8 biological replicas and 6 wild-type XX embryos controls ), dpy-27(y57) XX embryos (3 biological replicas and 3 wild-type XX embryos controls), and sdc-2(y93, RNAi) XX embryos (3 biological replicas and 3 wild-type XX embryos controls).
Project description:Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in C. elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4. The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1. Together, our results identify additional components of the RNAi inheritance machinery whose sequence conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality.