Project description:au13-01_pi-plc What are the genes that are regulated by basal PI-PLC? Arabidopsis thaliana cells in suspension (5-days old). Cultivated in environment (middle) Gamborg+2,4-D. Added inhibitors 4 hr before extraction of the RNAs. We try to determine the role of phospholipases C ( PI-PLC) in the control of the basal expression of the genes of suspension of Arabidopsis thaliana. A first experience in which we used the edelfosine as inhibitor allowed us to identify numerous genes the basal expression of which is altered by this inhibition. We want to confirm these results with another inhibitor. 4 dye-swap - treated vs untreated comparison - treatment variations
Project description:When grown under phosphate (Pi) deficiency, plants adjust their developmental program and metabolic activity to cope with this nutritional stress. For Arabidopsis, the developmental responses include inhibition of primary root growth and enhanced formation of lateral roots and root hairs. Pi deficiency also inhibits photosynthesis by suppressing the expression of photosynthetic genes. Interestingly, early studies showed that photosynthetic gene expression was also suppressed in roots, a non-photosynthetic tissue. The biological relevance of this phenomenon, however, is not known. In this work, we characterized an Arabidopsis mutant, hps7, which is hypersensitive to Pi deficiency; the hypersensitivity includes an increased inhibition of root growth. HPS7 encodes a tyrosylprotein sulfotransferase (TPST). Accumulation of TPST proteins, but not mRNA, is induced by Pi deficiency. Comparative RNA-Seq analyses indicated that expression of many photosynthetic genes was activated in the roots of hps7. Under Pi deficiency, the expression of the photosynthetic genes in hps7 is further increased, which leads to the enhanced accumulation of chlorophyll, starch, and reactive oxygen species. The increased inhibition of root growth in hps7 under Pi deficiency was completely reversed by growing plants in the dark. Based on these results, we propose that suppression of photosynthetic gene expression in roots is required for sustained root growth under Pi deficiency.
Project description:au13-01_pi-plc What are the genes that are regulated by basal PI-PLC? Arabidopsis thaliana cells in suspension (5-days old). Cultivated in environment (middle) Gamborg+2,4-D. Added inhibitors 4 hr before extraction of the RNAs. We try to determine the role of phospholipases C ( PI-PLC) in the control of the basal expression of the genes of suspension of Arabidopsis thaliana. A first experience in which we used the edelfosine as inhibitor allowed us to identify numerous genes the basal expression of which is altered by this inhibition. We want to confirm these results with another inhibitor.
Project description:Phosphate (Pi) deficiency alters root hair length and frequency as a means of increasing the absorptive surface area of roots. Three partly redundant single R3 MYB proteins, CAPRICE (CPC), ENHANCER OF TRY AND CPC1 (ETC1) and TRIPTYCHON (TRY), positively regulate the root hair cell fate by participating in a lateral inhibition mechanism. To identify putative targets and processes that are controlled by these three transcription factors (TFs), we conducted transcriptional profiling of roots from Arabidopsis thaliana wild-type plants, and cpc, etc1 and try mutants grown under Pi-replete and Pi-deficient conditions using RNA-seq.
Project description:We performed a transcriptomic analysis of Pi starvation responses in Arabidopsis thaliana (Columbia-0) phr1 mutant plants expressing PHR1 in presence of cicloheximide, that inhibit protein translation, thus preventing any effect of PHR1 on the expression of indirect targets. Results show the primary target genes of PHR1 in the responses to Pi starvation. The analysis was performed in phr1 plants and phr1 plants overexpressing a fusion GR:PHR1 (OXGR:PHR1) whose activity is postranslationally controlled by dexamethasone (DEX), that allows studying gene expression upon PHR1 activation and the concomitant inhibition of translation with cycloheximide (CHX), thus preventing any effect of PHR1 on the expression of indirect targets. To perform this study, phr1 and OXGR:PHR1 phr1 plants were grown for seven days in complete Johnson liquid media (+Pi), 2 days in Pi-lacking media (-Pi) and then supplemented with 5 µM DEX and 10 µM CHX for 6 hours before harvesting. Three independent biological samples of total RNA from shoot and root were hybridized separately.
Project description:A proteomics strategy was used to identify putative GPI-APs from adult B. malayi. Three different sample types were prepared for analysis. Firstly, intact adult worms were treated with PI-PLC to enzymatically release and solubilize the protein away from the lipid moiety. A mock-treatment with no PI-PLC was performed as a negative control. The samples derived from treatment of the intact worms have been named “Surface” but it should be noted that the proteins could originate from any exposed surface like the mouth, vagina, or rectum of the worm. Secondly, a membrane fraction of B. malayi adult female worms was prepared by ultracentrifugation of a total lysate in a sucrose buffer to separate membrane proteins from soluble proteins. This membrane fraction was also treated with PI-PLC or mock-treated without PI-PLC as a negative control. Lastly, a GPI-AP enriched sample was prepared by performing a series of organic solvent partitions to extract GPI-APs from a membrane fraction. This sample was not treated with PI-PLC. Proteins in all three samples types were digested with trypsin and the resulting peptides analyzed by LC-MS/MS.
Project description:Pi availability is a significant limiting factor for plant growth in both natural and agricultural systems. To cope with such limiting conditions, plants have adapted developmental and biochemical strategies to enhance Pi acquisition and to avoid starvation. A myriad of genes that are involved in the regulation and display of these strategies have been identified. However, the possible epigenetic components regulating the phosphate starvation responses have not been thoroughly investigated. DNA methylation is a major epigenetic mark involved in diverse biological processes and it may play a critical role in Pi starvation stress adaptation, also changes in DNA methylation can lead to a unique gene expression pattern in response to specific developmental and environmental conditions. Here in we demonstrate that non-CpG DNA methylation is required for proper expression of a number of Pi-limitation responsive genes in Arabidopsis thaliana and results in altered morphologic and physiologic phosphate starvation responses.Our data suggest that DNA methylation is involved in the modulation of Pi starvation responses via the transcriptional regulation of a set of phosphate-starvation responsive genes. Analysis of 8 different treatments, 2 different Organs (Root and Shoot), 2 different Phosphate treatments (High Pi, Low Pi), 2 different Times (Short Term, Long Term), 2 biological replicates for treatment