Project description:Rheumatoid synoviocytes, which consist of fibroblast-like synoviocytes (FLS) and synovial macrophages (SM), are crucial for the progression of rheumatoid arthritis (RA). Particularly, FLS of RA patients (RA-FLS) exhibit invasive characteristics reminiscent of cancer cells, destroying cartilage and bone, although it remains unresolved how RA-FLS exhibit invasive phenotype. RA-FLS and SM originate differently from mesenchymal and myeloid cells, respectively, but share many pathologic functions. However, the molecular signatures and biological networks representing the distinct and shared features of the two cell types are unknown. Presently, we performed global transcriptome profiling of FLS and SM obtained from RA and osteoarthritis patients. By comparing the transcriptomes, we identified distinct molecular signatures and cellular processes defining invasiveness of RA-FLS and pro-inflammatory properties of RA synovial macrophages (RA-SM), respectively. Interestingly, under interleukin1β-stimulated condition, RA-FLS newly acquired pro-inflammatory signature mimicking RA-SM without losing invasive properties. We next reconstructed a network model that delineates the shared, RA-FLS-dominant (invasive), and RA-SM-dominant (inflammatory) processes. From the network model, we selected 13 genes, including POSTN and TWIST1, as novel regulator candidates responsible for FLS invasiveness. Of note, POSTN and TWIST1 expressions were elevated in independent RA-FLS and were further instigated by interleukin1β. In vitro functional assays demonstrated the requirement of POSTN and TWIST1 for migration and invasion of RA-FLS stimulated with interleukin1β. Taken together, our systems approach to rheumatoid synovitis provides a basis for identifying novel regulators responsible for pathological features of RA-FLS and RA-SM, demonstrating how a certain type of cells acquires functional redundancy under chronic inflammatory conditions. To identify molecular signatures of FLS and MLS in RA joints, we isolated FLS from synovial tissues of RA and osteoarthritis (OA) patients, obtained synovial macrophages from synovial fluid of RA patients, and differentiated control macrophages from peripheral blood of healthy subjects. Also, we stimulated FLS with IL1β, and then analyzed gene expression profiles of both IL1β-stimulated RA-FLS and OA-FLS
Project description:Fibroblast-like synoviocytes (FLSs) are critical for synovial aggressiveness and joint destruction in rheumatoid arthritis (RA).The role and expression patterns of long noncoding RNAs (lncRNAs) in RA are largely unknown. We performed lncRNA and mRNA microarrays to identify differentially expressed lncRNAs and mRNAs in fibroblast-like synoviocytes from rheumatoid arthritis patients compared with fibroblast-like synoviocytes from trauma patients.
Project description:LncRNA and mRNA microarrays were performed to identify differentially expressed lncRNAs and mRNAs in fibroblast-like synoviocytes from rheumatoid arthritis patients compared with fibroblast-like synoviocytes from trauma patients.
Project description:LncRNA and mRNA microarrays were performed to identify differentially expressed lncRNAs and mRNAs in fibroblast-like synoviocytes from rheumatoid arthritis patients compared with fibroblast-like synoviocytes from trauma patients. Fibroblast-like synoviocytes were isolated from synovial tissues. LncRNA and mRNA microarrays were performed using fibroblast-like synoviocytes at passage 3.
Project description:Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease of unknown etiology and pronounced inter-patient heterogeneity. To characterize RA at the molecular level and to uncover key pathomechanisms, we performed whole-genome gene expression analyses. Synovial tissues from rheumatoid arthritis patients were compared to those from osteoarthritis patients and to normal donors. Keywords: disease state analysis Two disease conditions (rheumatoid arthritis and osteoarthritis) in comparison to normal donors were investigated. For the two disease groups samples derived from three individual patients and two pools of patients were hybridised.