Project description:Fibroblast-like synoviocytes (FLSs) are critical for synovial aggressiveness and joint destruction in rheumatoid arthritis (RA).The role and expression patterns of long noncoding RNAs (lncRNAs) in RA are largely unknown. We performed lncRNA and mRNA microarrays to identify differentially expressed lncRNAs and mRNAs in fibroblast-like synoviocytes from rheumatoid arthritis patients compared with fibroblast-like synoviocytes from trauma patients.
Project description:LncRNA and mRNA microarrays were performed to identify differentially expressed lncRNAs and mRNAs in fibroblast-like synoviocytes from rheumatoid arthritis patients compared with fibroblast-like synoviocytes from trauma patients. Fibroblast-like synoviocytes were isolated from synovial tissues. LncRNA and mRNA microarrays were performed using fibroblast-like synoviocytes at passage 3.
Project description:LncRNA and mRNA microarrays were performed to identify differentially expressed lncRNAs and mRNAs in fibroblast-like synoviocytes from rheumatoid arthritis patients compared with fibroblast-like synoviocytes from trauma patients.
Project description:Rheumatoid arthritis (RA), a chronic and systemic disease of unknown etiology, is characterized by hyperplasia of synovial cells, which ultimately lead to the destruction of cartilage and bone. To elucidate the molecular mechanisms that lead to RA, we analyzed synovial cells established from patient with RA by oligonucleotide microarrays. Gene expression profiles reveal a novel pathophysiologic function of RA synovial cells as a generator of oxidative stress, and a self-defense mechanism against self-generated oxidative stress. Experiment Overall Design: We isolated synovial cell culture from patients with rheumatoid arthritis and osteoarthritis. Fibroblast from patient with osteoarthritis was used for the reference.
Project description:<p>We characterized the epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes (FLS) compared with osteoarthritis FLS. Multiple technologies were used, including ChIP-seq to assay H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and H3K9me3, ATAC-seq for chromatin accessibility, the transcriptome by RNA-seq and whole genomic bisulfite sequencing for DNA methylation. Integrative analysis was performed using a novel unbiased method to identify regions of the genome that have similar epigenetic marks. The regions that distinguished RA and osteoarthritis cells were primarily located in active enhancers and promoters. The regions and genes identified included immunological pathways. In addition, some unexpected pathways, most notably "Huntington's Disease Signaling", were discovered. The Huntington's Disease pathway was biologically validated for Huntingtin-interacting protein-1, which regulated invasive behavior of FLS. For a complete description, see R. Ai <i>et al.</i>, Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. <i>Nat Commun</i> 9, 1921 (2018).</p> <p>Sequencing data of study participants are available through dbGaP's Authorized Access portal, while analyses of the sequencing data may be obtained through NCBI's GEO portal under <a href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112658">GSE112658.</a></p>
Project description:To characterize transcriptome changes upon ATF6α knockdown by the siRNA in rheumatoid arthritis fibroblast-like synoviocytes (RA FLSs)