Project description:A phenotypically and functionally distinct population of CD4+ Foxp3+ T cells (Tregs) rapidly accumulates in acutely injured skeletal muscle of mice, just as invading myeloid-lineage cells switch from a pro-inflammatory to a pro-regenerative state. Analysis of gene expression of Tregs and CD4+Foxp3- T cells (Tconvs) from injured muscle and spleen revealed that the transcriptome of muscle Treg cells is distinct from that of splenic Tregs. A set of genes is uniquely expressed by muscle Tregs, while another set is over-expressed by the two muscle populations vis-à-vis their two spleen counterparts. 6 wk-old Foxp3-ires-GFP mice were injured in skeletal muscles with cardiotoxin. Four and fourteen days later, Tregs and Tconvs from spleen and muscle were double-sorted into Trizol. To reduce variability, cells from multiple mice were pooled for sorting, and three replicates were generated for all groups. RNA from 1.5-2.5 x 104 cells was amplified, labeled, and hybridized to Affymetrix Mouse Gene 1.0 ST Arrays.
Project description:Global gene expression analysis of injured skeletal muscle showed that amphiregulin (Areg), a growth factor over-expressed by muscle Treg cells, enhances muscle regeneration both in the presence and in the absence of Tregs. Foxp3-DTR+ and Foxp3-DTR- mice were injured with cardiotoxin in TA muscle at day 0 and treated with diphtheria toxin every other day from day 0 until dissection. Amphiregulin or PBS were administered im on day 0 and ip every other day until dissection. TA muscle was flash-frozen and RNA was extracted using Trizol. RNA from whole tissue samples was amplified, labeled, and hybridized to Affymetrix Mouse Gene 1.0 ST Arrays.
Project description:A phenotypically and functionally distinct population of CD4+ Foxp3+ T cells (Tregs) rapidly accumulates in acutely injured skeletal muscle of mice, just as invading myeloid-lineage cells switch from a pro-inflammatory to a pro-regenerative state. Analysis of gene expression of Tregs and CD4+Foxp3- T cells (Tconvs) from injured muscle and spleen revealed that the transcriptome of muscle Treg cells is distinct from that of splenic Tregs. A set of genes is uniquely expressed by muscle Tregs, while another set is over-expressed by the two muscle populations vis-à-vis their two spleen counterparts.
Project description:<p>Exercise enhances physical performance and reduces the risk of many disorders such as cardiovascular disease, type 2 diabetes, dementia and cancer. Exercise characteristically incites an inflammatory response, notably in skeletal muscles. While some effector mechanisms have been identified, regulatory elements activated in response to exercise remain obscure. Here, we have addressed the roles of Foxp3+CD4+ regulatory T cells (Tregs) in the healthful activities of exercise via immunologic, transcriptomic, histologic, metabolic and biochemical analyses of acute and chronic murine exercise models. Exercise rapidly induced expansion of the muscle Treg compartment, thereby guarding against over-exuberant production of interferon gamma and consequent metabolic disruptions, particularly mitochondrial aberrancies. Importantly, the performance-enhancing effects of exercise training were dampened in the absence of Tregs. Thus, exercise is a natural Treg booster with therapeutic potential in disease and aging contexts.</p>
Project description:Global gene expression analysis of injured skeletal muscle showed that amphiregulin (Areg), a growth factor over-expressed by muscle Treg cells, enhances muscle regeneration both in the presence and in the absence of Tregs.
Project description:Effect of Amphiregulin on global gene expression in injured skeletal muscle in the presence or absence of CD4+Foxp3+ regulatory T cells (Tregs).
Project description:We report gene expression of Treg cells isolated from injured muscle in IL-33 vs PBS treated mice. Male Foxp3-GFP C57BL/6 reporter (2 months old) mice were injured intramuscularly with cardiotoxin/rIL-33 (0.3 ug/muscle). Tregs were sorted directly into Trizol from injured muscle 4 days post-injury. Gene expression profiling of muscle Tregs from IL-33 vs PBS injured mice.
Project description:We report age-related gene expression of Treg cells isolated from injured muscle and spleen. Male C57BL/6 Foxp3-GFP reporter mice were injured intramuscularly with cardiotoxin. Tregs were sorted directly into Trizol from injured muscle and spleen 4 days post-injury. Gene expression profiling of muscle and splenic Tregs from 2- vs >6-month old mice (biological duplicate for each).
Project description:Foxp3+CD4+ regulatory T cells (Tregs) play important roles in controlling both homeostatic processes and immune responses at the tissue and organismal levels. For example, Tregs promote muscle regeneration in acute or chronic injury models by direct effects on local muscle progenitor cells as well as on infiltrating inflammatory cells. Muscle Tregs have a transcriptome, a T cell receptor (TCR) repertoire and effector capabilities distinct from those of classical, lymphoid-organ Tregs, but it has proven difficult to study the provenance and functions of these unique features due to the rarity of muscle Tregs and their fragility upon isolation. Here, we attempted to side-step these hindrances by generating, characterizing and employing a line of mice carrying rearranged transgenes encoding the TCRα and TCRβ chains from a Treg clone rapidly and specifically expanded within acutely injured hindlimb muscle of young mice. Tregs displaying the transgene-encoded TCR preferentially accumulated in injured hindlimb muscle in a TCR-dependent manner both in the straight transgenic model and in adoptive-transfer systems; non-Treg CD4+ T cells expressing the same TCR did not specifically localize in injured muscle. The definitive muscle-Treg transcriptome was not established until the transgenic Tregs inhabited muscle. When crossed onto the mdx model of Duchenne muscular dystrophy, the muscle-Treg TCR transgenes drove enhanced accumulation of Tregs in hindlimb muscles and improved muscle regeneration. These findings invoke the possibility of harnessing muscle Tregs or their TCRs for treatment of skeletal muscle pathologies.
Project description:CD4+Foxp3+ regulatory T cells (Tregs) accumulate in skeletal muscle from dystrophin-deficient mdx mice. Analysis of global gene expression in muscles from mdx mice treated with anti-CD25 compared with muscles from mdx mice treated with control antibody revealed that Tregs partially protect mdx mice from muscle pathology and promote muscle repair/regeneration.