Project description:There are three major epigenetic mechanisms, DNA methylation, histone modifications, and ncRNAs. The histone is a key player in epigenetics, and the acetylation and methylation are their most common post-translational modifications (PTMs). These histone modifications have important roles in transcriptional regulation, DNA repair, DNA replication, alternative splicing and chromosome condensation. For example, we previously found that H3.3 lysine 36 trimethylation (H3.3K36me3) histone and its reader protein BS69 could work together to regulate pre-mRNA process. Therefore, in this study, we established in vitro histone acetylation, demethylation and methylation models, respectively, by using human lung, liver and colorectal cancer cells.
Project description:Recognition of modified histones by “reader” proteins plays a critical role in the regulation of transcription1. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions following RNA polymerase II (Pol II) elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin at an appropriate state to suppress cryptic transcription2,3. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies4. Here we show that the candidate tumor suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates Pol II elongation. Structural studies reveal that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific “Ser31” residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. ChIP-sequencing analysis reveal a genome-wide colocalization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription corepressor via modulating the transition of the promoter-proximal paused Pol II to elongation. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumor cell growth; higher expression of ZMYND11 is observed in triple-negative breast cancer patients with better prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth and tumor formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone variant-mediated transcription elongation control to tumor suppression. ChIP-seq analysis of ZMYND11, H3K36me3 in U2OS cells and ZMYND11 knockdown cells; ChIP-seq of H3.3 in Flag-H3.3 stable U2OS cells; RNA-seq of ZNYMD11 depleted U2OS cells.
Project description:Polycomb repressive complex 2 (PRC2) regulates gene expression during lineage specification through trimethylation of lysine 27 on histone H3 (H3K27me3). In Drosophila, polycomb binding sites are dynamic chromatin regions coupled to incorporation of the histone variant H3.3. Here we show in mouse embryonic stem cells (ESCs) that H3.3 is required for proper establishment of H3K27me3 at the promoters of developmentally regulated genes. These promoters show reduced dynamics as determined by deposition of de novo synthesized histones, associated with reduced PRC2 occupancy. H3.3-depleted ESCs show upregulation of extraembryonic trophectoderm, as well as misregulation of other developmental genes upon differentiation. Our data demonstrate the importance of H3.3 incorporation in ESCs and suggest that changes in chromatin dynamics in its absence lead to misregulation of gene expression during differentiation. Moreover, our findings lend support to the emerging notion that H3.3 has multiple functions in distinct genomic locations that are not always correlated with an “active” chromatin state. RNA-seq analysis of three embryonic stem cell lines (control, H3.3 KD1, and H3.3 KD2)
Project description:Polycomb repressive complex 2 (PRC2) regulates gene expression during lineage specification through trimethylation of lysine 27 on histone H3 (H3K27me3). In Drosophila, polycomb binding sites are dynamic chromatin regions coupled to incorporation of the histone variant H3.3. Here we show in mouse embryonic stem cells (ESCs) that H3.3 is required for proper establishment of H3K27me3 at the promoters of developmentally regulated genes. These promoters show reduced dynamics as determined by deposition of de novo synthesized histones, associated with reduced PRC2 occupancy. H3.3-depleted ESCs show upregulation of extraembryonic trophectoderm, as well as misregulation of other developmental genes upon differentiation. Our data demonstrate the importance of H3.3 incorporation in ESCs and suggest that changes in chromatin dynamics in its absence lead to misregulation of gene expression during differentiation. Moreover, our findings lend support to the emerging notion that H3.3 has multiple functions in distinct genomic locations that are not always correlated with an “active” chromatin state. CATCH-IT analysis of five embryonic stem cell lines (control, H3.3 KD1, and H3.3 KD2; wild type and Hira-/-)
Project description:Polycomb repressive complex 2 (PRC2) regulates gene expression during lineage specification through trimethylation of lysine 27 on histone H3 (H3K27me3). In Drosophila, polycomb binding sites are dynamic chromatin regions coupled to incorporation of the histone variant H3.3. Here we show in mouse embryonic stem cells (ESCs) that H3.3 is required for proper establishment of H3K27me3 at the promoters of developmentally regulated genes. These promoters show reduced dynamics as determined by deposition of de novo synthesized histones, associated with reduced PRC2 occupancy. H3.3-depleted ESCs show upregulation of extraembryonic trophectoderm, as well as misregulation of other developmental genes upon differentiation. Our data demonstrate the importance of H3.3 incorporation in ESCs and suggest that changes in chromatin dynamics in its absence lead to misregulation of gene expression during differentiation. Moreover, our findings lend support to the emerging notion that H3.3 has multiple functions in distinct genomic locations that are not always correlated with an “active” chromatin state. Native ChIP analysis of three histone post-translational modifications (H3K4me3, H3K27me3, H3K27ac) in two mouse embryonic stem cell (ESC) lines (control and H3.3-depleted). Inputs sequenced as control. Native ChIP analysis of H3.3B-HA in control and Suz12-/- ESCs. Crosslinking ChIP analysis of histone H3 using a general H3 antibody in two ESC lines (control and H3.3-depleted). Crosslinking ChIP analysis Hira, UTX, and Jmjd3 in wild type and H3.3 KO ESCs.
Project description:Recognition of modified histones by “reader” proteins plays a critical role in the regulation of transcription1. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions following RNA polymerase II (Pol II) elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin at an appropriate state to suppress cryptic transcription2,3. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies4. Here we show that the candidate tumor suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates Pol II elongation. Structural studies reveal that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific “Ser31” residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. ChIP-sequencing analysis reveal a genome-wide colocalization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription corepressor via modulating the transition of the promoter-proximal paused Pol II to elongation. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumor cell growth; higher expression of ZMYND11 is observed in triple-negative breast cancer patients with better prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth and tumor formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone variant-mediated transcription elongation control to tumor suppression.