Project description:Gprc5a is a lung tumor suppressor gene. Gprc5a-knockout (ko) mice can develop spontaneous lung cancer and Gprc5a-ko mouse model is relevant to human lung cancer. Thus, exploration of the mechanisms underlying lung tumorigenesis in Gprc5a-ko mice would be very helpful for revealing those in human lung cancer. We used microarrays to detail the global gene expression profile that underlies oncogenesis by Gprc5a-knockout gene deletion in mouse tracheal epithelial cells. Wild type and gene-knockout mouse tracheal epithelial cells that were divided into two groups were used for RNA extraction.
Project description:Gprc5a is a lung tumor suppressor gene. Gprc5a-knockout (ko) mice can develop spontaneous lung cancer and Gprc5a-ko mouse model is relevant to human lung cancer. Thus, exploration of the mechanisms underlying lung tumorigenesis in Gprc5a-ko mice would be very helpful for revealing those in human lung cancer. We used microarrays to detail the global gene expression profile that underlies oncogenesis by Gprc5a-knockout gene deletion in mouse tracheal epithelial cells.
Project description:Increasing the understanding of the impact of changes in oncogenes and tumor suppressor genes is essential for improving the management of lung cancer. Recently, we identified a new mouse lung-specific tumor suppressor - the G-protein coupled receptor 5A (Gprc5a). We sought to understand the molecular consequences of Gprc5a loss and towards this we performed microarray analysis of the transcriptomes of lung epithelial cells cultured from normal tracheas of Gprc5a knockout and wild-type mice to define a loss-of-Gprc5a gene signature. Gprc5a wild type cells (WT-NLE) and Gprc5a knockout cells (NULL-NLE) were isolated and cultured from trachea of three week old Gprc5a wild type and knockout mice, respectively. Following RNA extraction and purification, the transcriptome of the Gprc5a wild type and knockout cells were analyzed by microarray analysis using the Affymetrix MG-430 2.0 murine array platform.
Project description:Increasing the understanding of the impact of changes in oncogenes and tumor suppressor genes is essential for improving the management of lung cancer. Recently, we identified a new mouse lung-specific tumor suppressor - the G-protein coupled receptor 5A (Gprc5a). We sought to understand the molecular consequences of Gprc5a loss and towards this we performed microarray analysis of the transcriptomes of lung epithelial cells cultured from normal tracheas of Gprc5a knockout and wild-type mice to define a loss-of-Gprc5a gene signature. Moreover, we analyzed differential gene expression patterns between Gprc5a knockout normal lung epithelial cells as well as lung adenocarcinoma cells isolated and cultured from tumors of NNK-exposed Gprc5a knockout mice.
Project description:Expression data from dexamethasone treated mouse embryonic neural progenitor/stem cells isolated from wild type C57Bl/6 or caveolin-1 knockout mice